A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
Bulletin of Materials Science | 2019年 / 42卷
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [31] Human Body Constituted Triboelectric Nanogenerators as Energy Harvesters, Code Transmitters, and Motion Sensors
    Zhang, Renyun
    Hummelgard, Magnus
    Ortegren, Jonas
    Olsen, Martin
    Andersson, Henrik
    Yang, Ya
    Olin, Haken
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (06): : 2955 - 2960
  • [32] Piezoelectric–electromagnetic integrated vibrational hybrid energy harvester for low power applications
    V. Amirtha Raj
    M. Manivannan
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2024, 18 : 453 - 464
  • [33] Design and Fabrication of Vibration Based Energy Harvester Using Microelectromechanical System Piezoelectric Cantilever for Low Power Applications
    Kim, Moonkeun
    Lee, Sang-Kyun
    Yang, Yil Suk
    Jeong, Jaehwa
    Min, Nam Ki
    Kwon, Kwang-Ho
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (12) : 7932 - 7937
  • [34] An In-Shoe Harvester With Motion Magnification for Scavenging Energy From Human Foot Strike
    Xie, Longhan
    Cai, Mingjing
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2015, 20 (06) : 3264 - 3268
  • [35] Power evaluation of advanced energy-harvester using graphical analysis
    Makihara, Kanjuro
    Takezawa, Akihiro
    Shigeta, Daisuke
    Yamamoto, Yuta
    MECHANICAL ENGINEERING JOURNAL, 2015, 2 (04):
  • [36] Enhancement of Piezoelectric energy harvester power density using natural rubber
    Muhamad, Linasuriani
    Salleh, Hanim
    2014 IEEE 2ND INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATION TECHNOLOGIES (ISTT), 2014, : 51 - 55
  • [37] Continuous ECG Monitoring with Low-Power Electronics and Energy Harvesting
    Richards, Jackson
    Lim, Michael
    Li, Guanting
    Araya, Esteban
    Jia, Yaoyao
    2020 IEEE 63RD INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2020, : 643 - 646
  • [38] Humidity-resistant triboelectric energy harvester using electrospun PVDF/PU nanofibers for flexibility and air permeability
    Kim, Wondo
    Pyo, Soonjae
    Kim, Min-Ook
    Oh, Yongkeun
    Kwon, Dae-Sung
    Kim, Jongbaeg
    NANOTECHNOLOGY, 2019, 30 (27)
  • [39] Towards an Electrostatic Energy Harvester for Low Frequencies Using a Liquid Electrode
    Hintermueller, Marcus A.
    Offenzeller, Christina
    Hilber, Wolfgang
    Jakoby, Bernhard
    2019 IEEE SENSORS, 2019,
  • [40] Lightweight Piezoelectric Bending Beam-Based Energy Harvester for Capturing Energy From Human Knee Motion
    Gao, Fei
    Liu, Gaoyu
    Fu, Xinlei
    Li, Liang
    Liao, Wei-Hsin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (03) : 1256 - 1266