A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [31] A composite energy harvester based on human reciprocating motion
    Gu, Xiangfeng
    He, Lipeng
    Wang, Hongxin
    Sun, Lei
    Zhou, Ziming
    Cheng, Guangming
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (03):
  • [32] MEMS Rotational Electret Energy Harvester for Human Motion
    Nakano, J.
    Komori, K.
    Hattori, Y.
    Suzuki, Y.
    15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015), 2015, 660
  • [33] A LOW FREQUENCY VIBRATION DRIVEN, MINIATURIZED AND HYBRIDIZED ELECTROMAGNETIC AND TRIBOELECTRIC ENERGY HARVESTER USING DUAL HALBACH ARRAY
    Salauddin, M.
    Park, J. Y.
    2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2017, : 1832 - 1835
  • [34] Experimental evaluation of Tusi couple based energy harvester for scavenging power from human motion
    Smilek, Jan
    Hadas, Zdenek
    14TH INTERNATIONAL CONFERENCE ON VIBRATION ENGINEERING AND TECHNOLOGY OF MACHINERY (VETOMAC XIV), 2018, 211
  • [35] A Non-Resonant Piezoelectric-Electromagnetic-Triboelectric Hybrid Energy Harvester for Low-Frequency Human Motions
    Tang, Gang
    Wang, Zhen
    Hu, Xin
    Wu, Shaojie
    Xu, Bin
    Li, Zhibiao
    Yan, Xiaoxiao
    Xu, Fang
    Yuan, Dandan
    Li, Peisheng
    Shi, Qiongfeng
    Lee, Chengkuo
    NANOMATERIALS, 2022, 12 (07)
  • [36] Performance Analysis of Low Voltage Converters for Completely Integrable Wearable Human Motion Energy Harvester
    Gornevs, Ilgvars
    Blums, Juris
    Jurkans, Vilnis
    2018 16TH BIENNIAL BALTIC ELECTRONICS CONFERENCE (BEC), 2018,
  • [37] Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester
    Zhao, Chaoyang
    Yang, Yaowen
    Upadrashta, Deepesh
    Zhao, Liya
    ENERGY, 2021, 214
  • [38] A Low-Frequency Broadband Triboelectric Energy Harvester Based on Cantilever Beam with a Groove
    Hu, Xin
    Cheng, Fang
    Tang, Gang
    Xu, Bin
    Li, Zhibiao
    Yan, Xiaoxiao
    Yuan, Dandan
    HUMAN CENTERED COMPUTING, 2019, 11956 : 483 - 492
  • [39] A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids
    Jiang, Dongyue
    Su, Yunpeng
    Wang, Kun
    Wang, Yutao
    Xu, Minyi
    Dong, Ming
    Chen, Guijun
    NANO ENERGY, 2020, 70
  • [40] Low-Power Energy Harvester for Wiegand Transducers
    Ongaro, Fabio
    Saggini, Stefano
    Corradini, Luca
    2013 TWENTY-EIGHTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC 2013), 2013, : 453 - 459