A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
Bulletin of Materials Science | 2019年 / 42卷
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [21] Piezoelectric wind energy harvester for low-power sensors
    Sirohi, Jayant
    Mahadik, Rohan
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (18) : 2215 - 2228
  • [22] Nonlinear bi-stable energy harvester from human motion
    Wang, Wei
    Cao, Junyi
    Lin, Jing
    Zhou, Shengxi
    Cai, Yunlong
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2015, 49 (08): : 58 - 63
  • [23] Human-motion energy harvester for autonomous body area sensors
    Geisler, M.
    Boisseau, S.
    Perez, M.
    Gasnier, P.
    Willemin, J.
    Ait-Ali, I.
    Perraud, S.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (03)
  • [24] Scavenging energy from the motion of human lower limbs via a piezoelectric energy harvester
    Fan, Kangqi
    Yu, Bo
    Zhu, Yingmin
    Liu, Zhaohui
    Wang, Liansong
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (07):
  • [25] Energy harvesting technologies for low-power electronics
    Alvarado, U.
    Juanicorena, A.
    Adin, I.
    Sedano, B.
    Gutierrez, I.
    No, J.
    TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2012, 23 (08): : 728 - 741
  • [26] High power-output and highly stretchable protein-based biomechanical energy harvester
    Bo, Xiangkun
    Uyanga, Kindness A.
    Wang, Lingyun
    Firdous, Irum
    Shi, Jihong
    Li, Weilu
    Almardi, Jasim M.
    Fahim, Muhammad
    Liu, Fei
    Lyu, Huanlin
    Daoud, Walid A.
    CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [27] Harvest human kinetic energy to power portable electronics
    Xie, Longhan
    Du, Ruxu
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (07) : 2005 - 2008
  • [28] Harvest human kinetic energy to power portable electronics
    Longhan Xie
    Ruxu Du
    Journal of Mechanical Science and Technology, 2012, 26 : 2005 - 2008
  • [29] Low-Power Electronics in Energy Harvesting Autonomous Systems
    Maurath, Dominic
    Peters, Christian
    Hehn, Thorsten
    Lotze, Niklas
    Mohamed, Sherif A.
    Manoli, Yiannos
    TM-TECHNISCHES MESSEN, 2009, 76 (12) : 560 - 567
  • [30] Evaluation of human-scale motion energy harvesting for wearable electronics
    Kathpalia, Bharat
    Tan, David
    Stern, Ilan
    Erturk, Alper
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2017, 2017, 10164