A triboelectric energy harvester using human biomechanical motion for low power electronics

被引:0
|
作者
Puneet Khushboo
机构
[1] GGSIP University,University School of Information, Communication & Technology
[2] Maharaja Surajmal Institute of Technology,Department of Electronics and Communication Engineering
来源
Bulletin of Materials Science | 2019年 / 42卷
关键词
Energy harvesting; PTFE; FEP; sliding motion; vertical motion;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents the conversion of human biomechanical motion into useful electricity using triboelectricity. Nylon, polytetrafluoroethylene (PTFE) and fluorinated ethylene propylene (FEP) are selected as triboelectric materials for charge generation and aluminium/copper is selected as an electrode during vertical and sliding motions. Output voltage, energy density and power are computed across different capacitors and resistors. The maximum d.c. voltage is found to be 9.56 V across a 1 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor using a combination of nylon and PTFE during vertical motion. Also, the maximum energy density across a 100 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}F capacitor is 492.47 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}J cm-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cm}^{-3}$$\end{document} and the maximum power across a 4.63 MΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} resistor is 6.2 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu $$\end{document}W. Such portable systems can harvest human biomechanical energy while walking or exercising and can act as an infinite lifetime energy source for conventional low power electronics.
引用
收藏
相关论文
共 50 条
  • [1] A triboelectric energy harvester using human biomechanical motion for low power electronics
    Khushboo
    Azad, Puneet
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (03)
  • [2] An Underwater Triboelectric Biomechanical Energy Harvester to Power the Electronic Tag of Marine Life
    Liu, Bo
    Du, Taili
    Xu, Xiaoyan
    Liu, Jianhua
    Zhu, Peng
    Guo, Linan
    Li, Yuanzheng
    Wang, Tianrun
    Zou, Yongjiu
    Wang, Hao
    Xu, Peng
    Sun, Peiting
    Xu, Minyi
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (09)
  • [3] Harvesting Human Biomechanical Energy to Power Portable Electronics
    Xie, Longhan
    Du, Ruxu
    ELECTRICAL POWER & ENERGY SYSTEMS, PTS 1 AND 2, 2012, 516-517 : 1779 - +
  • [4] An Energy Harvester Coupled with a Triboelectric Mechanism and Electrostatic Mechanism for Biomechanical Energy Harvesting
    Zhai, Lei
    Gao, Lingxiao
    Wang, Ziying
    Dai, Kejie
    Wu, Shuai
    Mu, Xiaojing
    NANOMATERIALS, 2022, 12 (06)
  • [5] A lightweight biomechanical energy harvester with high power density and low metabolic cost
    Fan, Jun
    Xiong, Cai-Hua
    Huang, Zhong-Kui
    Wang, Chen-Bo
    Chen, Wen-Bin
    ENERGY CONVERSION AND MANAGEMENT, 2019, 195 : 641 - 649
  • [6] Flexible corrugated triboelectric nanogenerators for efficient biomechanical energy harvesting and human motion monitoring
    So, Mei Yi
    Xu, Bingang
    Li, Zihua
    Lai, Cheuk Lam
    Jiang, Chenghanzhi
    NANO ENERGY, 2023, 106
  • [7] Tuning the Resonant Frequency and Damping of an Electromagnetic Energy Harvester Using Power Electronics
    Mitcheson, Paul D.
    Toh, Tzern T.
    Wong, Kwok H.
    Burrow, Steve G.
    Holmes, Andrew S.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2011, 58 (12) : 792 - 796
  • [8] Looped energy harvester for human motion
    Geisler, M.
    Boisseau, S.
    Gasnier, P.
    Willemin, J.
    Gobbo, C.
    Despesse, G.
    Ait-Ali, I.
    Perraud, S.
    SMART MATERIALS AND STRUCTURES, 2017, 26 (10)
  • [9] Hierarchically designed nanocomposites for triboelectric nanogenerator toward biomechanical energy harvester and smart home system
    Zheng, Zhipeng
    Xia, Jiaoyuan
    Wang, Binquan
    Guo, Yiping
    NANO ENERGY, 2022, 95
  • [10] Enhancing energy harvesting for low-power electronics: A study on the impact of electrode number and freestanding layer in rotary triboelectric nanogenerator
    Shahriyari, A.
    Golshanbafghi, Z.
    Yousefizad, M.
    Manavizadeh, N.
    Pourfarzad, H.
    Ahaninpajooh, F.
    Samoodi, S.
    CURRENT APPLIED PHYSICS, 2024, 66 : 49 - 59