Connecting geodesics on smooth surfaces

被引:0
|
作者
Hannes Thielhelm
Alexander Vais
Daniel Brandes
Franz-Erich Wolter
机构
[1] Leibniz University of Hannover,Welfenlab, Division of Computer Graphics
来源
The Visual Computer | 2012年 / 28卷
关键词
Shortest paths; Distance computation; Geodesics; Homotopy method; Focal curves;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a novel method for computing multiple geodesic connections between two arbitrary points on a smooth surface. Our method is based on a homotopy approach that is able to capture the ambiguity of geodesic connections in the presence of positive Gaussian curvature that generates focal curves.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [31] Quasi-geodesics - A new class of simple and non-slip trajectories on revolutional surfaces
    Liang, YD
    Zou, ZQ
    Zhang, ZF
    Luo, G
    TECHNOLOGY TRANSFER IN A GLOBAL COMMUNITY, 1996, 28 : 1071 - 1079
  • [32] Algorithms for geodesics
    Karney, Charles F. F.
    JOURNAL OF GEODESY, 2013, 87 (01) : 43 - 55
  • [33] RWA problem with geodesics in realistic OTN topologies
    Cousineau, Martin
    Perron, Sylvain
    Caporossi, Gilles
    Paiva, Marcia
    Segatto, Marcelo
    OPTICAL SWITCHING AND NETWORKING, 2015, 15 : 18 - 28
  • [34] ON SUBRIEMANNIAN GEODESICS
    Greiner, Peter
    Calin, Ovidiu
    ANALYSIS AND APPLICATIONS, 2003, 1 (03) : 289 - 350
  • [35] Algorithms for geodesics
    Charles F. F. Karney
    Journal of Geodesy, 2013, 87 : 43 - 55
  • [36] The Extension of Geodesics
    Li, Mengjian
    Geng, Weidong
    MEASUREMENT TECHNOLOGY AND ENGINEERING RESEARCHES IN INDUSTRY, PTS 1-3, 2013, 333-335 : 95 - 104
  • [37] Visualizing geodesics
    Hotz, I
    Hagen, H
    VISUALIZATION 2000, PROCEEDINGS, 2000, : 311 - 318
  • [38] Random Covers of Compact Surfaces and Smooth Linear Spectral Statistics
    Naud, Frederic
    ANNALES HENRI POINCARE, 2025,
  • [39] On geodesics in low regularity
    Saemann, Clemens
    Steinbauer, Roland
    NON-REGULAR SPACETIME GEOMETRY, 2018, 968
  • [40] Geodesics in conical manifolds
    Ghimenti, M
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2005, 25 (02) : 235 - 261