Connecting geodesics on smooth surfaces

被引:0
|
作者
Hannes Thielhelm
Alexander Vais
Daniel Brandes
Franz-Erich Wolter
机构
[1] Leibniz University of Hannover,Welfenlab, Division of Computer Graphics
来源
The Visual Computer | 2012年 / 28卷
关键词
Shortest paths; Distance computation; Geodesics; Homotopy method; Focal curves;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a novel method for computing multiple geodesic connections between two arbitrary points on a smooth surface. Our method is based on a homotopy approach that is able to capture the ambiguity of geodesic connections in the presence of positive Gaussian curvature that generates focal curves.
引用
收藏
页码:529 / 539
页数:10
相关论文
共 50 条
  • [1] Connecting geodesics on smooth surfaces
    Thielhelm, Hannes
    Vais, Alexander
    Brandes, Daniel
    Wolter, Franz-Erich
    VISUAL COMPUTER, 2012, 28 (6-8) : 529 - 539
  • [2] Geodesic as limit of geodesics on PL-Surfaces
    Lieutier, Andre
    Thibert, Boris
    ADVANCES IN GEOMETRIC MODELING AND PROCESSING, 2008, 4975 : 178 - +
  • [3] Consequences of contractible geodesics on surfaces
    Denvir, J
    MacKay, RS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) : 4553 - 4568
  • [4] Closed Geodesics on Incomplete Surfaces
    Paul Norbury
    J. Hyam. Rubinstein
    Geometriae Dedicata, 2005, 116 : 1 - 36
  • [5] Closed geodesics on incomplete surfaces
    Norbury, P
    Rubinstein, JH
    GEOMETRIAE DEDICATA, 2005, 116 (01) : 1 - 36
  • [6] Geodesics in Brownian surfaces (Brownian maps)
    Bettinelli, Jeremie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 612 - 646
  • [7] Geodesic bifurcation on smooth surfaces
    Hannes Thielhelm
    Alexander Vais
    Franz-Erich Wolter
    The Visual Computer, 2015, 31 : 187 - 204
  • [8] Geodesic bifurcation on smooth surfaces
    Thielhelm, Hannes
    Vais, Alexander
    Wolter, Franz-Erich
    VISUAL COMPUTER, 2015, 31 (02) : 187 - 204
  • [9] CHARACTERIZING HYPERELLIPTIC SURFACES IN TERMS OF CLOSED GEODESICS
    Gallo, Daniel
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 965 - 972
  • [10] Computation of inflection lines and geodesics on developable surfaces
    Maekawa, T
    Chalfant, JS
    MATHEMATICAL ENGINEERING IN INDUSTRY, 1999, 7 (02) : 251 - 267