Empirical likelihood for high-dimensional linear regression models

被引:0
|
作者
Hong Guo
Changliang Zou
Zhaojun Wang
Bin Chen
机构
[1] Nankai University,LPMC and Department of Statistics, School of Mathematical Sciences
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Metrika | 2014年 / 77卷
关键词
Asymptotic normality; Coverage accuracy; High-dimensional data; Hotelling’s ; -square statistic; Wilk’s phenomenon; 62G05; 62G10; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
High-dimensional data are becoming prevalent, and many new methodologies and accompanying theories for high-dimensional data analysis have emerged in response. Empirical likelihood, as a classical nonparametric method of statistical inference, has proved to possess many good features. In this paper, our focus is to investigate the asymptotic behavior of empirical likelihood for regression coefficients in high-dimensional linear models. We give regularity conditions under which the standard normal calibration of empirical likelihood is valid in high dimensions. Both random and fixed designs are considered. Simulation studies are conducted to check the finite sample performance.
引用
收藏
页码:921 / 945
页数:24
相关论文
共 50 条
  • [31] Confidence intervals for high-dimensional partially linear single-index models
    Gueuning, Thomas
    Claeskens, Gerda
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 149 : 13 - 29
  • [32] Converting high-dimensional regression to high-dimensional conditional density estimation
    Izbicki, Rafael
    Lee, Ann B.
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 2800 - 2831
  • [33] Robust and sparse estimation methods for high-dimensional linear and logistic regression
    Kurnaz, Fatma Sevinc
    Hoffmann, Irene
    Filzmoser, Peter
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 172 : 211 - 222
  • [34] Transfer learning for high-dimensional linear regression via the elastic net
    Meng, Kang
    Gai, Yujie
    Wang, Xiaodi
    Yao, Mei
    Sun, Xiaofei
    KNOWLEDGE-BASED SYSTEMS, 2024, 304
  • [35] Reduced rank regression with matrix projections for high-dimensional multivariate linear regression model
    Guo, Wenxing
    Balakrishnan, Narayanaswamy
    Bian, Mengjie
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (02): : 4167 - 4191
  • [36] GENERALIZED ADDITIVE PARTIAL LINEAR MODELS WITH HIGH-DIMENSIONAL COVARIATES
    Lian, Heng
    Liang, Hua
    ECONOMETRIC THEORY, 2013, 29 (06) : 1136 - 1161
  • [37] Adaptive group Lasso for high-dimensional generalized linear models
    Wang, Mingqiu
    Tian, Guo-Liang
    STATISTICAL PAPERS, 2019, 60 (05) : 1469 - 1486
  • [38] Variable selection in high-dimensional double generalized linear models
    Xu, Dengke
    Zhang, Zhongzhan
    Wu, Liucang
    STATISTICAL PAPERS, 2014, 55 (02) : 327 - 347
  • [39] Variable selection in high-dimensional double generalized linear models
    Dengke Xu
    Zhongzhan Zhang
    Liucang Wu
    Statistical Papers, 2014, 55 : 327 - 347
  • [40] Group selection in high-dimensional partially linear additive models
    Wei, Fengrong
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (03) : 219 - 243