Low power thrust measurements of the water electrolysis Hall effect thruster

被引:0
作者
Alexander Schwertheim
Aaron Knoll
机构
[1] Imperial College London,
来源
CEAS Space Journal | 2022年 / 14卷
关键词
Hall effect thruster; Alternative propellants; Water propulsion; Electrolysis; Multimode propulsion;
D O I
暂无
中图分类号
学科分类号
摘要
We propose that a Hall effect thruster could be modified to operate on the products of water electrolysis. Such a thruster would exploit the low cost and high storability of water while producing gaseous hydrogen and oxygen in-situ as they are required. By supplying the anode with oxygen and the cathode with hydrogen, the poisoning of the cathode is mitigated. The water electrolysis Hall effect thruster (WET-HET) has been designed to demonstrate this concept. The dimensions of the WET-HET have been optimized for oxygen operation using PlasmaSim, a zero-dimensional particle in cell code. We present the first direct thrust measurements of the WET-HET. A hanging pendulum style thrust balance is used to measure the thrust of the WET-HET while operating in the Boltzmann vacuum facility within the Imperial Plasma Propulsion Laboratory. For this test the beam was neutralized using a filament plasma bridge neutralizer operating on krypton. We find thrust, specific impulse, and thrust efficiency all increase linearly with power for values between 400 and 1050 W. Increasing the mass flow rate from 0.96 to 1.85 mg/s increases thrust at the expense of specific impulse. Changing mass flow rate was found to have little impact on the thrust efficiency over this range. An optimal radial magnetic flux density of 403 G at the exit plane is found. Further increases to the magnetic field beyond this point were found to decrease the thrust, specific impulse and thrust efficiency, whereas the discharge voltage increased monotonically with increasing magnetic field for a given input power. It was found that the experimental thruster performance was lower than the simulation results from PlasmaSim. However, the general trends in performance as a function of power and propellant mass flow rate were preserved. We attribute a portion of this discrepancy to the inability of the simulation to model the energy absorbed by the covalent bond of the oxygen molecule. For the powers and mass flow rates surveyed we measured thrust ranging from 4.52±0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.18\,$$\end{document} to 8.45±0.18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.18\,$$\end{document}mN, specific impulse between 324±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 12\,$$\end{document} and 593±12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 12\,$$\end{document}s, and anode thrust efficiencies between 1.34±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.10\,$$\end{document} and 2.34±0.10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.10\,$$\end{document}%.
引用
收藏
页码:3 / 17
页数:14
相关论文
共 50 条
[21]   Investigation of the Effect of Hollow Cathode Neutralizer Location on Hall Effect Thruster Efficiency [J].
Turan, Nazli ;
Korkmaz, Oguz ;
Celik, Murat .
2015 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2015, :599-604
[22]   Searching for Chaotic Behavior in the Ion Current Waveforms of a Hall Effect Thruster [J].
A. Jardin ;
M. Jakubczak ;
A. Riazantsev ;
A. Jardin ;
J. Kurzyna ;
P. Lubiński .
Journal of Fusion Energy, 2022, 41
[23]   Searching for Chaotic Behavior in the Ion Current Waveforms of a Hall Effect Thruster [J].
Jardin, A. ;
Jakubczak, M. ;
Riazantsev, A. ;
Kurzyna, J. ;
Lubiriski, P. .
JOURNAL OF FUSION ENERGY, 2022, 41 (02)
[24]   Experimental study of the effect of propellant asymmetrical distribution on anode current in a Hall effect thruster [J].
Ding, Minghao ;
Li, Hong ;
Ding, Yongjie ;
Liu, Hui ;
Yu, Daren ;
Wang, Xiaogang .
PHYSICS LETTERS A, 2019, 383 (25) :3108-3113
[25]   Effect of magnetic field configuration on discharge characteristic of a Hall effect thruster with a variable channel [J].
Li, Hong ;
Fan, Haotian ;
Liu, Xingyu ;
Ding, Minghao ;
Ding, Yongjie ;
Wei, Liqiu ;
Yu, Daren ;
Wang, Xiaogang .
VACUUM, 2019, 162 :78-84
[26]   Performance and plume evolutions during the lifetime test of a Hall-effect thruster [J].
Cao, Shuai ;
Wang, Xuan ;
Ren, Junxue ;
Ouyang, Ning ;
Zhang, Guangchuan ;
Zhang, Zhe ;
Tang, Haibin .
ACTA ASTRONAUTICA, 2020, 170 :509-520
[27]   State estimation of the dynamic behavior of plasma properties in a Hall effect thruster discharge [J].
Troyetsky, D. E. ;
Greve, C. M. ;
Tsikata, S. ;
Hara, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (44)
[28]   Electron trajectories in a Hall effect thruster anomalous transport induced by an azimuthal wave [J].
Perez-Luna, Jaime ;
Dubuit, Nicolas ;
Garrigues, Laurent ;
Hagelaar, Gerjan J. M. ;
Boeuf, Jean-Pierre .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (04) :1212-1213
[29]   Performance Parameter Analysis of a Hall Effect Thruster With Modified Bohm Parameter Model [J].
Min Gyoung Cho ;
Gwanyong Jung ;
Hong-Gye Sung .
International Journal of Aeronautical and Space Sciences, 2020, 21 :1028-1036
[30]   Performance Parameter Analysis of a Hall Effect Thruster With Modified Bohm Parameter Model [J].
Cho, Min Gyoung ;
Jung, Gwanyong ;
Sung, Hong-Gye .
INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2020, 21 (04) :1028-1036