Yang-Mills instantons and dyons on homogeneous G2-manifolds

被引:0
作者
Irina Bauer
Tatiana A. Ivanova
Olaf Lechtenfeld
Felix Lubbe
机构
[1] Leibniz Universität Hannover,Institut für Theoretische Physik
[2] Leibniz Universität Hannover,Centre for Quantum Engineering and Space
[3] JINR,Time Research
来源
Journal of High Energy Physics | / 2010卷
关键词
Flux compactifications; Solitons Monopoles and Instantons; Differential and Algebraic Geometry;
D O I
暂无
中图分类号
学科分类号
摘要
We consider LieG-valued Yang-Mills fields on the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} \times {{G} \left/ {H} \right.} $$\end{document}, where G/H is a compact nearly Kähler six-dimensional homogeneous space, and the manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} \times {{G} \left/ {H} \right.} $$\end{document} carries a G2-structure. After imposing a general G-invariance condition, Yang-Mills theory with torsion on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{R} \times {{G} \left/ {H} \right.} $$\end{document} is reduced to Newtonian mechanics of a particle moving in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}^6} $$\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}^4} $$\end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}^2} $$\end{document} under the influence of an inverted double-well-type potential for the cases G/H = SU(3)/ U(1)×U(1), Sp(2)/ Sp(1)×U(1) or G2/SU(3), respectively. We analyze all critical points and present analytical and numerical kink-and bounce-type solutions, which yield G-invariant instanton configurations on those cosets. Periodic solutions on S1×G/H and dyons on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i\mathbb{R} \times {{G} \left/ {H} \right.} $$\end{document} are also given.
引用
收藏
相关论文
共 99 条
  • [1] Corrigan E(1983)First Order Equations for Gauge Fields in Spaces of Dimension Greater Than Four Nucl. Phys. B 214 452-undefined
  • [2] Devchand C(1984)Completely Solvable Gauge Field Equations in Dimension Greater Than Four Nucl. Phys. B 236 381-undefined
  • [3] Fairlie DB(1985)Anti-self-dual Yang-Mills connections on a complex algebraic surface and stable vector bundles Proc. Lond. Math. Soc. 50 1-undefined
  • [4] Nuyts J(1987)Infinite determinants, stable bundles and curvature Duke Math. J. 54 231-undefined
  • [5] Ward RS(1986)On the existence of Hermitian-Yang-Mills connections on stable bundles over compact Kähler manifolds Comm. Pure Appl. Math. 39 257-undefined
  • [6] Donaldson SK(1989)A note on our previous paper: On the existence of Hermitian YangMills connections in stable vector bundles Comm. Pure Appl. Math. 42 703-undefined
  • [7] Donaldson SK(1988)Yang-Mills fields on quaternionic spaces Nonlinearity 1 517-undefined
  • [8] Uhlenbeck KK(1998)A generalization of the notion of instanton Differ. Geom. Appl. 8 1-undefined
  • [9] Yau S-T(1998)Special quantum field theories in eight and other dimensions Commun. Math. Phys. 194 149-undefined
  • [10] Uhlenbeck KK(2000)Gauge theory and calibrated geometry. I Annals Math. 151 193-undefined