Sixteen-Dimensional Locally Compact Translation Planes with Large Automorphism Groups having no Fixed Points

被引:0
作者
Hermann Hähl
机构
[1] Universität Stuttgart,Mathematisches Institut B
来源
Geometriae Dedicata | 2000年 / 83卷
关键词
locally compact topological plane; translation plane; octonion plane; automorphism group; collineation group without fixed points;
D O I
暂无
中图分类号
学科分类号
摘要
The 16-dimensional compact projective planes whose automorphism group contains a closed connected subgroup fixing a line, but no point and having dimension at least 35 are determined. It is shown that these planes all belong to three families of planes determined by H. Löwe and the author, and hence are explicitly known. A major stepping stone to this goal is a result by H. Salzmann according to which every such plane is a translation plane.
引用
收藏
页码:105 / 117
页数:12
相关论文
共 15 条
[1]  
Buchanan T.(1977)On the kernel and the nuclei of 8-dimensional locally compact quasifields Arch. Math. 29 472-480
[2]  
Hähl H.(1978)Zur Klassifikation von 8-und 16-dimensionalen lokalkompakten Translations-ebenen nach ihren Kollineationsgruppen Math. Z. 159 259-294
[3]  
Hähl H.(1979)Lokalkompakte zusammenhängende Translationsebenen mit groβen Sphärenbahnen auf der Translationsachse Results Math. 2 62-87
[4]  
Hähl H.(1982)Achtdimensionale lokalkompakte Translationsebenen mit zu SL2Cisomorphen Kollineationsgruppen J. Reine Angew. Math. 330 76-92
[5]  
Hähl H.(1987)Sechzehndimensionale lokalkompakte Translationsebenen mit Spin(7) als Kollineationsgruppe Arch. Math. 48 267-276
[6]  
Hähl H.(1987)Eine Kennzeichnung der Oktavenebene Indag. Math. 49 29-39
[7]  
Hähl H.(1987)SU Geom. Dedicata 23 319-345
[8]  
Hähl H.(2000)ℂals Kollineationsgruppe in sechzehndimensionalen lokalkompakten Translationsebenen J. Lie Theory 10 127-146
[9]  
Löwe H.(1943)Non-compact, almost simple groups operating on locally compact, connected translation planes Ann. of Math. 44 454-470
[10]  
Montgomery D.(1970)Transformation groups of spheres Math. Z. 117 112-124