On the freeness of Böröczky line arrangements

被引:0
作者
Jakub Kabat
机构
[1] Instytut Matematyki UP,
来源
Periodica Mathematica Hungarica | 2019年 / 78卷
关键词
Line arrangements; Freeness; Hirzebruch inequality; Böröczky arrangements; 52C35; 51D20; 13C10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present note, we focus on the freeness and some combinatorial properties of line arrangements in the projective plane having only double and triple points. The main result shows that for this class of line arrangements the freeness property is combinatorially determined. As a corollary, we show that Böröczky line arrangements in the sense of Füredi and Palásti (Proc Am Math Soc 92(4):561–566, 1984), except exactly three cases, are not free.
引用
收藏
页码:31 / 37
页数:6
相关论文
共 13 条
[1]  
Anzis B(2016)On the geometry of real or complex supersolvable line arrangements J. Comb. Theory, Ser. A 140 76-96
[2]  
Tohǎneanu Ş(1984)Arrangements of lines with a large number of triangles Proc. Am. Math. Soc. 92 561-566
[3]  
Füredi Z(2013)On sets defining few ordinary lines Discrete Comput. Geom. 50 409-468
[4]  
Palásti I(2009)A catalogue of simplicial arrangements in the real projective plane Ars Math. Contemp. 2 25-148
[5]  
Green B(2011)On the fundamental group of the complement of a complex hyperplane arrangement Funct. Anal. Appl. 45 137-291
[6]  
Tao T(1980)Theory of logarithmic differential forms and logarithmic vector fields J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 265-358
[7]  
Grünbaum B(2012)Hyperplane arrangements: computations and conjectures Adv. Stud. Pure Math. 62 323-258
[8]  
Rybnikov GL(2009)Freeness of conic-line arrangements in Comment. Math. Helv. 84 235-179
[9]  
Saito K(1981)Generalized exponents of a free arrangement of hyperplanes and Shepard–Todd–Brieskorn formula Invent. Math. 63 159-undefined
[10]  
Schenck H(undefined)undefined undefined undefined undefined-undefined