Autoregressive model extrapolation using cubic splines for damage progression analysis

被引:0
|
作者
Marcus Omori Yano
Luis G. G. Villani
Samuel da Silva
Eloi Figueiredo
机构
[1] UNESP - Universidade Estadual Paulista,Departamento de Engenharia Mecânica, Ilha Solteira, Faculdade de Engenharia
[2] UFES - Universidade Federal do Espírito Santo,Departamento de Engenharia Mecânica, Vitória, Centro Tecnológico
[3] Lusófona University,Faculty of Engineering
[4] Universidade do Porto,Construct, Faculdade de Engenharia
关键词
Structural Health Monitoring; Autoregressive model; Extrapolation of AR model; Cubic Splines; Damage progression;
D O I
暂无
中图分类号
学科分类号
摘要
The application of Structural Health Monitoring (SHM) methods focuses mainly on its initial levels of the hierarchy of damage identification. The contribution of this paper is to propose a new strategy that allows going further, predicting the progression of the damage indices through the extrapolation of Autoregressive (AR) models with one-step-ahead prediction estimated at early-stage damage conditions using piecewise cubic splines. A trending curve capable of predicting the damage progression can be determined, and it allows the extrapolation to future structural conditions based on some assumptions. The data sets of a benchmark involving a three-story building structure are investigated to illustrate the proposed methodology. The extrapolated coefficients in the most severe condition are implemented to identify an extrapolated AR model, and the results are encouraging by adequately reproducing the structure’s future behavior if the damage is initially detected and not repaired immediately.
引用
收藏
相关论文
共 50 条
  • [11] ANALYSIS OF SOLAR-RADIATION DATA USING CUBIC-SPLINES
    CHILDS, RE
    CHUAH, DGS
    LEE, SL
    TAN, KC
    SOLAR ENERGY, 1984, 32 (05) : 643 - 653
  • [12] A digital convergence system using cubic splines
    Oh, CG
    Chung, Y
    Hong, CW
    Hong, SP
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 1999, 45 (04) : 1247 - 1252
  • [13] Design of a scan converter using cubic splines
    Lee, BG
    Kwon, YM
    Oh, C
    Chung, Y
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2001, 47 (01) : 6 - 9
  • [14] A dose-effect network meta-analysis model with application in antidepressants using restricted cubic splines
    Hamza, Tasnim
    Furukawa, Toshi A.
    Orsini, Nicola
    Cipriani, Andrea
    Iglesias, Cynthia P.
    Salanti, Georgia
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (08) : 1461 - 1472
  • [15] Cam motion synthesis using cubic splines
    Yoon, K.
    Rao, S.S.
    Journal of Mechanical Design, Transactions Of the ASME, 1993, 115 (03): : 441 - 446
  • [16] CURVE FITTING USING CUBIC-SPLINES
    RAJANI, BB
    REVISTA TECNICA INTEVEP, 1982, 2 (01): : 49 - 56
  • [17] Accurate modeling of contact using cubic splines
    Al-Dojayli, M
    Meguid, SA
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2002, 38 (04) : 337 - 352
  • [18] Fuzzy data approximation using smoothing cubic splines: Similarity and error analysis
    Valenzuela, O.
    Pasadas, M.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) : 2122 - 2144
  • [19] COMPUTER-ANALYSIS OF MECHANICAL TEST DATA USING CUBIC-SPLINES
    MILLIGAN, RV
    ISA TRANSACTIONS, 1978, 17 (02) : 21 - 30
  • [20] Extrapolation of a non-linear autoregressive model of pulmonary mechanics
    Langdon, Ruby
    Docherty, Paul D.
    Chiew, Yeong Shiong
    Chase, J. Geoffrey
    MATHEMATICAL BIOSCIENCES, 2017, 284 : 32 - 39