A multi-dimensional Szemerédi theorem for the primes via a correspondence principle

被引:0
作者
Terence Tao
Tamar Ziegler
机构
[1] UCLA Department of Mathematics,Department of Mathematics
[2] Technion—Israel Institute of Technology,undefined
来源
Israel Journal of Mathematics | 2015年 / 207卷
关键词
Natural Number; Arithmetic Progression; Correspondence Principle; Transference Principle; Banach Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
We establish a version of the Furstenberg-Katznelson multi-dimensional Szemerédi theorem in the primes P:= {2, 3, 5, …}, which roughly speaking asserts that any dense subset of Pd contains finite constellations of any given rational shape. Our arguments are based on a weighted version of the Furstenberg correspondence principle, relative to a weight which obeys an infinite number of pseudorandomness (or “linear forms”) conditions, combined with the main results of a series of papers by Green and the authors which establish such an infinite number of pseudorandomness conditions for a weight associated with the primes. The same result, by a rather different method, has been simultaneously established by Cook, Magyar and Titichetrakun and more recently by Fox and Zhao.
引用
收藏
页码:203 / 228
页数:25
相关论文
共 33 条
[1]  
Bergelson V.(1996)Polynomial extensions of van der Waerden’s and Szemer édi’s theorems Journal of the American Mathematical Society 9 725-753
[2]  
Leibman A.(2012) ℙ International Mathematics Research Notices 2012 2794-2816
[3]  
Cook B.(1977)Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions Journal d’Analyse Mathématique 71 204-256
[4]  
Magyar A.(1978)An ergodic Szemerédi theorem for commuting transformations Journal d’Analyse Mathématique 34 275-291
[5]  
Furstenberg H.(2010)Decompositions, approximate structure, transference, and the Hahn-Banach theorem Bulletin of the London Mathematical Society 42 573-606
[6]  
Furstenberg H.(2002)On arithmetic structures in dense sets of integers Duke Mathematical Journal 114 215-238
[7]  
Katznelson Y.(2005)Roth’s theorem in the primes Annals of Mathematics 161 1609-1636
[8]  
Gowers W. T.(2008)The primes contain arbitrarily long arithmetic progressions Annals of Mathematics 167 481-547
[9]  
Green B.(2006)Restriction theory of the Selberg sieve, with applications Journal de Théorie des Nombres de Bordeaux 18 147-182
[10]  
Green B.(2010)Linear equations in primes Annals of Mathematics 171 1753-1850