Chemical reactions of localized Fe atoms in ethylene and acetylene matrices at low temperatures using in-beam Mössbauer spectroscopy

被引:2
作者
Kobayashi Y. [1 ,2 ]
Yamada Y. [3 ]
Kubo M.K. [4 ]
Mihara M. [5 ]
Sato W. [6 ]
Miyazaki J. [7 ]
Nagatomo T. [2 ]
Takahashi K. [1 ]
Tanigawa S. [1 ]
Sato Y. [1 ]
Natori D. [1 ]
Suzuki M. [1 ]
Kobayashi J. [4 ]
Sato S. [8 ]
Kitagawa A. [8 ]
机构
[1] Graduate School, Engineering Science, University of Electro-Communications, Chofu, Tokyo
[2] RIKEN Nishina Center, RIKEN, Wako, 351-0198, Saitama
[3] Department of Chemistry, Tokyo University of Science, Shinjuku, Tokyo
[4] Division of Arts and Sciences, International Christian University, Mitaka, Tokyo
[5] Graduate School of Science, Osaka University, Toyonaka, Osaka
[6] Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Ishikawa
[7] Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1180, Ishikawa
[8] National Institute of Radiological Sciences, Inage, 263-8555, Chiba
来源
Hyperfine Interactions | 2018年 / 239卷 / 01期
基金
日本学术振兴会;
关键词
!sup]57[!/sup]Fe; !sup]57[!/sup]Mn; Acetylene; Ethylene; Gas matrix; In-beam Mössbauer spectroscopy; Ion implantation;
D O I
10.1007/s10751-018-1494-2
中图分类号
学科分类号
摘要
In-beam Mössbauer spectroscopy of 57Fe using a short-lived 57Mn (T1/2 = 89 s) implantation was applied to study the chemical products of localized Fe atoms in ethylene and acetylene matrices at low temperatures. The spectra obtained in both matrices were analyzed as three doublets. In ethylene at 14 K, Fe(C2H4)2 (Fe0, S = 1), [Fe(C2H4)3]+ (Fe+, S = 3/2), and [Fe(C2H4)2]+ (Fe+, S = 3/2) were assigned as derived from the Mössbauer parameters and density functional theory calculations. On the other hand, the products of [Fe(C2H2)2]+ (Fe+, S = 3/2) and [(C2H2)FeCCH2]+ (Fe+, S = 3/2) were determined in the acetylene matrix at 17 K. © 2018, Springer International Publishing AG, part of Springer Nature.
引用
收藏
相关论文
共 14 条
[1]  
Parker S.F., Peden C.H.F., Barrett P.H., Pearson R.G., Inorg. Chem., 22, (1983)
[2]  
Yamada Y., Katsumata K., Ono Y., Yamaguchi K., J. Radioanal. Nucl. Chem., 255, (2003)
[3]  
Van der Heyden M., Pasternak M., Langouche G., Hyperfine Interact., 29, (1986)
[4]  
Kobayashi Y., Nonaka H., Miyazaki J., Kubo M.K., Ueno H., Yoshimi A., Miyoshi H., Kameda D., Shimada K., Nagae D., Asahi K., Yamada Y., Hyperfine Interact, 166, (2006)
[5]  
Tanigawa S., Kobayashi Y., Yamada Y., Mihara M., Kubo M.K., Miyazaki J., Sato W., Nagatomo T., Natori D., Sato Y., Sato S., Kitagawa A., Hyperfine Interact, 237, (2016)
[6]  
Yamada Y., Kobayashi Y., Kubo M.K., Mihara M., Nagatomo T., Sato W., Miyazaki J., Sato S., Kitagawa A., Chem. Phys. Lett., 567, (2013)
[7]  
Yamada Y., Kobayashi Y., Kubo M.K., Mihara M., Nagatomo T., Sato W., Miyazaki J., Sato S., Kitagawa A., Hyperfine Interact, 226, (2013)
[8]  
Kobayashi Y., Yamada Y., Tanigawa S., Mihara M., Kubo M.K., Sato W., Miyazaki J., Nagatomo T., Sato Y., Natori D., Suzuki M., Kobayashi J., Sato S., Kitagawa A., Hyperfine Interact, 237, (2016)
[9]  
Nagatomo T., Kobayashi Y., Kubo M.K., Yamada Y., Mihara M., Sato W., Miyazaki J., Sato S., Kitagawa A., Nucl. Inst. Methods Phys. Res. B, 269, (2011)
[10]  
Neese F., WIREs Comput. Mol. Sci, 2, (2012)