Hydrogen energy has been widely accepted as renewable and clean energy source. However, safety problems exist in the process of hydrogen energy transportation and storage. On-site hydrogen production has great potential to solve safety problems, and dimethyl ether (DME) is an excellent hydrogen carrier. There are four ways for hydrogen production from DME, and they are DME steam reforming, partial oxidation of DME, autothermal reforming of DME, and plasma reforming of DME, respectively. Catalysts are essential for the first three reactions and the last one could achieve the activation of DME just through election catalysis. To the best of our knowledge, a review of hydrogen production from DME has not been reported, which should be discussed systematically. In this review, the advantages and disadvantages of different DME reforming processes are discussed, and the progress of catalysts for the reforming processes as well as the effects of catalysts in the reactions are summarized. This paper also provides the rational design of highly efficient catalysts on DME in the future.