The impact of the non-coincidence gauge on the dark energy dynamics in f(Q)-gravity

被引:0
作者
Andronikos Paliathanasis
机构
[1] Durban University of Technology,Institute of Systems Science
[2] Universidad Católica del Norte,Departamento de Matemáticas
来源
General Relativity and Gravitation | 2023年 / 55卷
关键词
Cosmology; -gravity; Dark energy;
D O I
暂无
中图分类号
学科分类号
摘要
We study the dynamical effects of the non-coincidence gauge on the geometric dark energy within the framework of fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( Q\right) $$\end{document}-gravity. We specifically examine a spatially flat Friedmann–Lemaître–Robertson–Walker universe with a dust fluid source, employing fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( Q\right) $$\end{document}-theory of gravity. Our goal is to analyze the dynamical evolution of cosmological parameters to reconstruct the cosmological history. We reproduce previous findings; nevertheless due to the presence of the dust fluid, new asymptotic solutions exist. We emphasize the significance of selecting the appropriate connection, as it dramatically change the cosmological dynamics. Additionally, we show that for the simple power-law fQ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( Q\right) $$\end{document} model, there exist a non-coincidence connection where the field equation reconstruct the main epochs of the cosmological history, that is, inflation, radiation epoch, matter era and the late-time acceleration is attributed to the de Sitter solution, which is the unique attractor of the solution trajectories. Moreover this model support Big Rip singularities as unstable solutions in the past.
引用
收藏
相关论文
共 121 条
[1]  
Perlmutter S(1998)Measurements of Astrophys. J. 517 565-undefined
[2]  
Riess AG(1998) and Astron. J. 116 1009-undefined
[3]  
Suzuki N(2012) from 42 high-redshift supernovae Astrophys. J. 746 85-undefined
[4]  
Clifton T(2012)Observational evidence from supernovae for an accelerating universe and a cosmological constant Phys. Rep. 513 1-undefined
[5]  
Ferreira PG(2017)The Hubble space telescope cluster supernova survey. V. Improving the dark-energy constraints above z Phys. Rep. 692 1-undefined
[6]  
Padilla A(2021) 1 and building an early-type-hosted supernova sample Class. Quantum Grav. 38 1-undefined
[7]  
Skordis C(2018)Non-linear Lagrangians and cosmological theory Phys. Rev. D 98 173-undefined
[8]  
Nojiri S(2018)Modified teleparallel gravity: inflation without an inflaton Phys. Rev. D 97 303-undefined
[9]  
Odintsov SD(2021)The geometrical trinity of gravity Phys. Rev. D 104 2150124-undefined
[10]  
Oikonomou VK(1970)General covariant symmetric teleparallel cosmology Mon. Not. R. Astron. Soc. 150 018-undefined