Locally Perturbed Random Walks with Unbounded Jumps

被引:0
作者
Daniel Paulin
Domokos Szász
机构
[1] Budapest University of Technology and Economics,Institute of Physics
[2] National University of Singapore,Department of Mathematics
[3] Budapest University of Technology and Economics,Department of Stochastics
来源
Journal of Statistical Physics | 2010年 / 141卷
关键词
Random walk; Local impurities; Infinite horizon; Weak convergence; Brownian motion; Local limit theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Szász and Telcs (J. Stat. Phys. 26(3), 1981) have shown that for the diffusively scaled, simple symmetric random walk, weak convergence to the Brownian motion holds even in the case of local impurities if d≥2. The extension of their result to finite range random walks is straightforward. Here, however, we are interested in the situation when the random walk has unbounded range. Concretely we generalize the statement of Szász and Telcs (J. Stat. Phys. 26(3), 1981) to unbounded random walks whose jump distribution belongs to the domain of attraction of the normal law. We do this first: for diffusively scaled random walks on Zd (d≥2) having finite variance; and second: for random walks with distribution belonging to the non-normal domain of attraction of the normal law. This result can be applied to random walks with tail behavior analogous to that of the infinite horizon Lorentz-process; these, in particular, have infinite variance, and convergence to Brownian motion holds with the superdiffusive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sqrt{n\log n}$\end{document} scaling.
引用
收藏
页码:1116 / 1130
页数:14
相关论文
共 21 条
  • [1] Bleher P.M.(1992)Statistical properties of two-dimensional periodic Lorentz gas with infinite horizon J. Stat. Phys. 66 315-373
  • [2] Chernov N.(2009)Anomalous current in periodic Lorentz gases with infinite horizon Usp. Mat. Nauk 64 73-124
  • [3] Dolgopyat D.(2009)Anomalous current in periodic Lorentz gases with infinite horizon Russ. Math. Surv. 64 651-699
  • [4] Chernov N.(2009)Limit theorems for locally perturbed planar Lorentz processes Duke Math. J. 148 459-499
  • [5] Dolgopyat D.(1981)On skew Brownian motion Ann. Probab. 9 309-313
  • [6] Dolgopyat D.(1973)Weak convergence of probability measures and random functions in the function space J. Appl. Probab. 10 109-121
  • [7] Szász D.(2008)[0,∞) Nonlinearity 21 1413-1422
  • [8] Varjú T.(1962)Kinetic transport in the two-dimensional periodic Lorentz gas Sel. Trans. Math. Stat. Probab. 2 183-207
  • [9] Harrison J.M.(1956)On the domains of attraction of multidimensional distributions Theory Probab. Appl. 1 261-537
  • [10] Shepp L.A.(1981)Limit theorems for stochastic processes J. Stat. Phys. 26 527-278