共 37 条
- [1] Pareschi L(2000)Numerical solution of the Boltzmann equation I: spectrally accurate approximation of the collision operator SIAM J. Numer. Anal. 37 1217-1245
- [2] Russo G(2009)Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states J. Comput. Phys. 228 2012-2036
- [3] Gamba IM(2021)Moment preserving Fourier–Galerkin spectral methods and application to the Boltzmann equation SIAM J. Numer. Anal. 59 613-633
- [4] Tharkabhushanam SH(2021)A new stability and convergence proof of the Fourier–Galerkin spectral method for the spatially homogeneous Boltzmann equation SIAM J. Numer. Anal. 2 331-407
- [5] Pareschi L(1949)On the kinetic theory of rarefied gases Commun. Pure Appl. Math. 295 617-643
- [6] Rey T(2015)Approximation of the linearized Boltzmann collision operator for hard-sphere and inverse-power-law models J. Comput. Phys. 74 336-374
- [7] Hu J(2018)Numerical simulation of microflows using moment methods with linearized collision operator J. Sci. Comput. 397 113-141
- [8] Qi K(2019)Approximation of the Boltzmann collision operator based on hermite spectral method J. Comput. Phys. 200 341-365
- [9] Yang T(2020)Burnett spectral method for the spatially homogeneous Boltzmann equation Comput. Fluids 37 4303-4330
- [10] Grad H(1966)Polynomial expansions in kinetic theory of gases Ann. Phys. 366 382-435