Various Equivalence Relations in Global Bifurcation Theory

被引:0
作者
N. B. Goncharuk
Yu. S. Ilyashenko
机构
[1] Department of Mathematical and Computational Sciences,
[2] University of Toronto Mississauga,undefined
[3] National Research University Higher School of Economics,undefined
[4] Independent University of Moscow,undefined
[5] Steklov Mathematical Institute of Russian Academy of Sciences,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2020年 / 310卷
关键词
bifurcation theory; vector fields on the sphere; equivalence of families of vector fields;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:78 / 97
页数:19
相关论文
共 36 条
[1]  
Andronov A. A.(1963)Generation of limit cycles from a separatrix forming a loop and from the separatrix of an equilibrium state of saddle–node type Am. Math. Soc. Transl., Ser. 2, 33 189-231
[2]  
Leontovich E. A.(1986)Bifurcation theory Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 5 5-218
[3]  
Arnol’d V. I.(1978)On the local structure of conformal mappings and holomorphic vector fields in Journées singulières de Dijon, 12–16 juin 1978 59–60 83-94
[4]  
Afraimovich V. S.(2018)Bifurcations of the ‘heart’ polycycle in generic 2-parameter families Trans. Moscow Math. Soc. 2018 209-229
[5]  
Il’yashenko Yu. S.(2006)Upper bounds for the number of orbital topological types of planar polynomial vector fields ‘modulo limit cycles’ Proc. Steklov Inst. Math. 254 238-254
[6]  
Shil’nikov L. P.(2019)Global bifurcations in generic one-parameter families with a parabolic cycle on Moscow Math. J. 19 709-737
[7]  
Camacho C.(2020)Bifurcations of the polycycle ‘tears of the heart’: Multiple numerical invariants Moscow Math. J. 20 323-341
[8]  
Dukov A. V.(0000)New structurally unstable families of planar vector fields Nonlinearity 0 0-299
[9]  
Fedorov R. M.(2016)Towards the general theory of global planar bifurcations Mathematical Sciences with Multidisciplinary Applications: In honor of Prof. C. Rousseau. And in Recognition of the Mathematics for Planet Earth Initiative 157 269-506
[10]  
Goncharuk N.(2018)Global bifurcations in the two-sphere: A new perspective Invent. Math. 213 461-115