On the limit cycles of a quintic planar vector field

被引:0
作者
Yu-hai Wu
Li-xin Tian
Mao-an Han
机构
[1] Jiangsu University,Department of Mathematics
[2] Shanghai Normal University,Department of Mathematics
来源
Science in China Series A: Mathematics | 2007年 / 50卷
关键词
double homoclinic loop; Melnikov function; stability; bifurcation; limit cycles; configuration; 34C07; 34C23; 34C37; 37G15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper concerns the number and distributions of limit cycles in a Z2-equivariant quintic planar vector field. 25 limit cycles are found in this special planar polynomial system and four different configurations of these limit cycles are also given by using the methods of the bifurcation theory and the qualitative analysis of the differential equation. It can be concluded that H(5) ⩾ 25 = 52, where H(5) is the Hilbert number for quintic polynomial systems. The results obtained are useful to study the weakened 16th Hilbert problem.
引用
收藏
页码:925 / 940
页数:15
相关论文
共 50 条
  • [1] On the limit cycles of a quintic planar vector field
    Wu, Yu-hai
    Tian, Li-xin
    Han, Mao-an
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (07): : 925 - 940
  • [2] On the limit cycles of a quintic planar vector field
    Yu-hai WU~(1+) Li-xin TIAN~1 Mao-an HAN~2 1 Department of Mathematics
    2 Department of Mathematics
    Science in China(Series A:Mathematics), 2007, (07) : 925 - 940
  • [3] ON THE NUMBER AND DISTRIBUTIONS OF LIMIT CYCLES IN A QUINTIC PLANAR VECTOR FIELD
    Wu Yuhai
    Gao, Yongxi
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (07): : 1939 - 1955
  • [4] On the Limit Cycles of a Perturbed Z3-Equivariant Planar Quintic Vector Field
    Ma, Yunlei
    Wu, Yuhai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [5] Bifurcations of limit cycles in a Z4-equivariant quintic planar vector field
    Yu Hai Wu
    Xue Di Wang
    Li Xin Tian
    Acta Mathematica Sinica, English Series, 2010, 26 : 779 - 798
  • [6] Bifurcations of Limit Cycles in a Z4-Equivariant Quintic Planar Vector Field
    Yu Hai WU Xue Di WANG Li Xin TIAN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (04) : 779 - 798
  • [7] Bifurcations of limit cycles in a Z 4-equivariant quintic planar vector field
    Wu, Yu Hai
    Wang, Xue Di
    Tian, Li Xin
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (04) : 779 - 798
  • [8] Limit Cycles of a Planar Vector Field
    M. Makhaniok
    J. Hesser
    S. Noehte
    R. Männer
    Acta Applicandae Mathematica, 1997, 48 : 13 - 32
  • [9] Limit cycles of a planar vector field
    Makhaniok, M
    Hesser, J
    Noehte, S
    Manner, R
    ACTA APPLICANDAE MATHEMATICAE, 1997, 48 (01) : 13 - 32
  • [10] AN IMPROVED LOWER BOUND ON THE NUMBER OF LIMIT CYCLES BIFURCATING FROM A QUINTIC HAMILTONIAN PLANAR VECTOR FIELD UNDER QUINTIC PERTURBATION
    Johnson, Tomas
    Tucker, Warwick
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 63 - 70