Inequalities for trigonometric sums and applications

被引:0
作者
Horst Alzer
Man Kam Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Aequationes mathematicae | 2020年 / 94卷
关键词
Trigonometric sums; Inequalities; Absolutely monotonic; 26A48; 26D05; 26D15; 33B10;
D O I
暂无
中图分类号
学科分类号
摘要
We present various new inequalities for cosine and sine sums. Among others, we prove that 0.10≤∑k=0n(a)2k(2k)!cos((2k+1)x)2k+1(a∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (a)_{2k}}{(2k)!} \frac{\cos ((2k+1)x)}{2k+1} \quad {(a\in \mathbb {R})} \end{aligned}$$\end{document}is valid for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π/2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi /2]$$\end{document} if and only if a∈[-2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\in [-2,1]$$\end{document}, and that 0.20≤∑k=0n(b)2k(2k)!sin((2k+1)x)2k+1(b∈R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} 0\le \sum _{k=0}^n \frac{ (b)_{2k}}{(2k)!} \frac{\sin ((2k+1)x)}{2k+1} \quad {(b\in \mathbb {R})} \end{aligned}$$\end{document}holds for all n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 0$$\end{document} and x∈[0,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\in [0,\pi ]$$\end{document} if and only if b∈[-3,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b\in [-3,2]$$\end{document}. Here, (a)n=∏j=0n-1(a+j)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a)_n=\prod _{j=0}^{n-1} (a+j)$$\end{document} denotes the Pochhammer symbol. Inequality (0.1) with a=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=1$$\end{document} is due to Gasper. We use it to obtain an integral inequality in the complex domain and to provide a one-parameter class of absolutely monotonic functions. An application of (0.2) leads to a new extension of the classical Fejér–Jackson inequality.
引用
收藏
页码:235 / 251
页数:16
相关论文
共 10 条
  • [1] Alzer H(2019)On Young’s inequality J. Math. Anal. Appl. 469 480-492
  • [2] Kwong MK(2002)Nonnegative trigonometric polynomials Constr. Approx. 18 117-143
  • [3] Dimitrov DK(1977)Positive sums of the classical orthogonal polynomials SIAM J. Math. Anal. 8 423-447
  • [4] Merlo CA(1998)Univalent polynomials and non-negative trigonometric sums Am. Math. Monthly 105 508-522
  • [5] Gasper G(1911)Über eine trigonometrische Summe Rend. Circ. Mat. Palermo 32 257-262
  • [6] Gluchoff A(1952)On a trigonometrical sum Ann. Soc. Polon. Math. 25 155-161
  • [7] Hartmann F(1912)On certain series of Fourier Proc. Lond. Math. Soc. (2) 11 357-366
  • [8] Jackson D(undefined)undefined undefined undefined undefined-undefined
  • [9] Turán P(undefined)undefined undefined undefined undefined-undefined
  • [10] Young WH(undefined)undefined undefined undefined undefined-undefined