Biharmonic functions on Schrödinger networks

被引:0
作者
Ibtesam Bajunaid
机构
[1] King Saud University,Department of Mathematics, College of Sciences
来源
Rendiconti del Circolo Matematico di Palermo Series 2 | 2024年 / 73卷
关键词
Infinite graphs; Discrete Schrödinger equation; Biharmonic functions; 31C20; 31B30;
D O I
暂无
中图分类号
学科分类号
摘要
In an infinite graph X,  the equation Δux=φxux,φx≥0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta u\left( x\right) =\varphi \left( x\right) u\left( x\right) ,\varphi \left( x\right) \ge 0,$$\end{document} is termed the Schrödinger equation. The solutions of this equation are named φ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi -$$\end{document}harmonic functions. This article studies varied aspects associated with these solutions: Harnack principle, minimum principle, domination principle, Dirichlet solution etc. The main thrust is the development of an abstract theory of discrete φ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi -$$\end{document}biharmonic functions on X and use it for the φ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi -$$\end{document}biharmonic classification of infinite graphs.
引用
收藏
页码:1277 / 1287
页数:10
相关论文
共 24 条
  • [1] Abodayeh K(2020)Schrödinger networks and their Cartesian products MMAS 44 4342-4347
  • [2] Anandam V(2000)Biharmonic extensions in Riemannian manifolds Hiroshima Math. J. 30 9-20
  • [3] Bajunaid I(2011)Biharmonic extensions on trees without positive potentials J. Math. Anal. Appl. 378 710-722
  • [4] Anandam V(1980)Espaces biharmoniques, systems ďéquations différentielles et couplage de Processus de Markov J. Math. Pures Appl. 59 187-240
  • [5] Bajunaid I(2009)Biharmonic green functions on homogeneous trees Mediterr. J. Math. 6 249-271
  • [6] Cohen J(2021)Riesz decomposition for Schrödinger operators on graphs J. Math. Anal. Appl. 8932 169-182
  • [7] Colonna F(2015)Discrete Green’s functions for Harmonic and Biharmonic inpaintion with Sparse Atoms EMMCVPR 31 640-650
  • [8] Singman D(2021)Infinite Schrödinger networks Vestn. Udmurtsk.Univ. Mat. Mekh. Komp. Nauki 51 541-561
  • [9] Bouleau N(2019)Boundary representations of Potential Anal. 25 35-97
  • [10] Cohen J(1975)harmonic and polyharmonic functions on trees Ann. Inst. Fourier 26 1-47