Emotion Recognition from Electroencephalogram (EEG) Signals Using a Multiple Column Convolutional Neural Network Model

被引:0
|
作者
Jha S.K. [1 ]
Suvvari S. [1 ]
Kumar M. [1 ]
机构
[1] Department of Computer Science and Engineering, National Institute of Technology Patna, Patna
关键词
Attention; Convolution neural network (CNN); Deep learning; EEG; Emotion recognition; GCNN; Multicolumn CNN;
D O I
10.1007/s42979-023-02543-0
中图分类号
学科分类号
摘要
Emotions are vital in human cognition and are essential for human survival. Emotion is often associated with smart decisions, interpersonal behavior, and, to some extent, intellectual cognition. From the recent literature on emotion recognition, we understand that the researchers are showing interest in creating meaningful "emotional" associations between humans and machines; there is a demand for accurate and scalable systems to detect human emotional states, as emotion recognition is needed to understand the mental status of such persons who cannot communicate their emotions, such as disabled people, mentally challenged persons, etc. Therefore, EEG signals provide a non-invasive method to identify the emotions of these disabled humans. The research community has recently been very interested in employing electroencephalography (EEG) for emotion classification since end-users have wearable EEG systems that may offer a portable, cheap, and straightforward technique for identifying emotions. Deep learning models have recently been extensively used to extract characteristics and recognize emotions from EEG recordings. Apart from that, various papers were reviewed in this research. This paper presented a multiple-column CNN network with a leaky ReLU activation function on the EEG brain wave and DEAP datasets. Multiple scalp electrode locations are used to collect EEG signals, and each electrode offers spatially unique data. The network can detect spatial correlations and extract characteristics that depict the spatial distribution of brain activity by employing a multiple-column CNN, which simultaneously processes signals from many channels. This makes it possible for the model to recognize emotions using the spatial information in EEG data. The result analysis was evaluated on different CNN models, and it was observed that an accuracy of 98.10% was achieved on the EEG brainwave dataset and 81% on the DEAP dataset. © 2024, The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.
引用
收藏
相关论文
共 50 条
  • [31] EEG-based emotion recognition using graph convolutional neural network with dual attention mechanism
    Chen, Wei
    Liao, Yuan
    Dai, Rui
    Dong, Yuanlin
    Huang, Liya
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2024, 18
  • [32] EEG-based emotion recognition using 4D convolutional recurrent neural network
    Fangyao Shen
    Guojun Dai
    Guang Lin
    Jianhai Zhang
    Wanzeng Kong
    Hong Zeng
    Cognitive Neurodynamics, 2020, 14 : 815 - 828
  • [33] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [34] EEG-based emotion recognition using 4D convolutional recurrent neural network
    Shen, Fangyao
    Dai, Guojun
    Lin, Guang
    Zhang, Jianhai
    Kong, Wanzeng
    Zeng, Hong
    COGNITIVE NEURODYNAMICS, 2020, 14 (06) : 815 - 828
  • [35] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [36] Emotion recognition with convolutional neural network and EEG-based EFDMs
    Wang, Fei
    Wu, Shichao
    Zhang, Weiwei
    Xu, Zongfeng
    Zhang, Yahui
    Wu, Chengdong
    Coleman, Sonya
    NEUROPSYCHOLOGIA, 2020, 146
  • [37] MULTIPLE FEATURE FUSION FOR AUTOMATIC EMOTION RECOGNITION USING EEG SIGNALS
    Liu, Ningjie
    Fang, Yuchun
    Li, Ling
    Hou, Limin
    Yang, Fenglei
    Guo, Yike
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 896 - 900
  • [38] Emotion Recognition from Multi-Channel EEG Data through Convolutional Recurrent Neural Network
    Li, Xiang
    Song, Dawei
    Zhang, Peng
    Yu, Guangliang
    Hou, Yuexian
    Hu, Bin
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 352 - 359
  • [39] Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
    Nagarajan Ganapathy
    Yedukondala Rao Veeranki
    Himanshu Kumar
    Ramakrishnan Swaminathan
    Journal of Medical Systems, 2021, 45
  • [40] Hybrid deep convolutional model-based emotion recognition using multiple physiological signals
    Akbulut, Fatma Patlar
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2022, 25 (15) : 1678 - 1690