An operadic approach to vertex algebra and Poisson vertex algebra cohomology

被引:0
作者
Bojko Bakalov
Alberto De Sole
Reimundo Heluani
Victor G. Kac
机构
[1] North Carolina State University,Department of Mathematics
[2] Sapienza Università di Roma,Dipartimento di Matematica
[3] IMPA,Department of Mathematics
[4] Estrada Dona Castorina,undefined
[5] MIT,undefined
来源
Japanese Journal of Mathematics | 2019年 / 14卷
关键词
superoperads; chiral and classical operads; vertex algebra and PVA coho-mologies; variational Poisson cohomology; 17B69 (primary); 18D50; 17B65; 17B63; 17B80 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We translate the construction of the chiral operad by Beilinson and Drinfeld to the purely algebraic language of vertex algebras. Consequently, the general construction of a cohomology complex associated to a linear operad produces the vertex algebra cohomology complex. Likewise, the associated graded of the chiral operad leads to the classical operad, which produces a Poisson vertex algebra cohomology complex. The latter is closely related to the variational Poisson cohomology studied by two of the authors.
引用
收藏
页码:249 / 342
页数:93
相关论文
共 28 条
  • [1] Bakalov B(2001)Cohomology of conformal algebras Theory of finite pseudoalgebras, Adv. Math. 162 1-140
  • [2] D’Andrea A(1999)Poisson vertex algebras in the theory of Hamiltonian equations Comm. Math. Phys. 200 561-598
  • [3] Kac VG(2009)Vertex algebras, Kac–Moody algebras, and the Monster Jpn. J. Math. 4 141-252
  • [4] Bakalov B(1986)Pre-Lie algebras and the rooted trees operad Proc. Nat. Acad. Sci. U.S.A. 83 3068-3071
  • [5] Kac VG(2001)Finite vs affine Walgebras Internat. Math. Res. Notices 2001 395-408
  • [6] Voronov AA(2006)Lie conformal algebra cohomology and the variational complex Jpn. J. Math. 1 137-261
  • [7] Barakat A(2009)Essential variational Poisson cohomology Comm. Math. Phys. 292 667-719
  • [8] De Sole A(2012)The variational Poisson cohomology Comm. Math. Phys. 313 837-864
  • [9] Kac VG(2013)The cohomology structure of an associative ring Jpn. J. Math. 8 1-145
  • [10] Borcherds RE(1963)Koszul duality for operads Ann. of Math. 78 267-288