Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity

被引:1
|
作者
Pankov A. [1 ]
Zhang G. [1 ]
机构
[1] Morgan State University, Baltimore, MD 21251
关键词
Soliton; Standing Wave; Nontrivial Solution; Selfadjoint Operator; Critical Point Theory;
D O I
10.1007/s10958-011-0448-x
中图分类号
学科分类号
摘要
We prove existence and multiplicity results for nontrivial standing waves in discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearities. Our approach is based on the critical point theory for smooth functionals. Bibliography: 25 titles. © 2011 Springer Science+Business Media, Inc.
引用
收藏
页码:71 / 82
页数:11
相关论文
共 50 条
  • [1] Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials
    J. Zhang
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2000, 51 : 498 - 503
  • [2] Standing Wave Solutions for the Discrete Coupled Nonlinear Schrodinger Equations with Unbounded Potentials
    Huang, Meihua
    Zhou, Zhan
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [3] Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials
    Zhan Zhou
    DeFang Ma
    Science China Mathematics, 2015, 58 : 781 - 790
  • [4] Multiplicity results of breathers for the discrete nonlinear Schrdinger equations with unbounded potentials
    ZHOU Zhan
    MA DeFang
    ScienceChina(Mathematics), 2015, 58 (04) : 781 - 790
  • [5] Normalized solutions of quasilinear Schr?dinger equations with saturable nonlinearity
    Zhang, Yu
    Sun, Juntao
    APPLIED MATHEMATICS LETTERS, 2023, 138
  • [6] Standing Waves for Discrete Nonlinear Schrödinger Equations with Nonperiodic Bounded Potentials
    Tie-shan He
    Meng Zhang
    Kai-hao Liang
    Peng-fei Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 374 - 385
  • [7] Standing Waves for Discrete Nonlinear Schr?dinger Equations with Nonperiodic Bounded Potentials
    Tie-shan HE
    Meng ZHANG
    Kai-hao LIANG
    Peng-fei GUO
    Acta Mathematicae Applicatae Sinica, 2019, 35 (02) : 374 - 385
  • [8] Standing Waves for Nonlinear Schrödinger Equations with a General Nonlinearity
    Jaeyoung Byeon
    Louis Jeanjean
    Archive for Rational Mechanics and Analysis, 2007, 185 : 185 - 200
  • [9] Ground state solutions for periodic discrete nonlinear Schrödinger equations with saturable nonlinearities
    Luyu Zhang
    Shiwang Ma
    Advances in Difference Equations, 2018
  • [10] Multiplicity of standing wave solutions of nonlinear Schrödinger equations with electromagnetic fields
    Zhongwei Tang
    Zeitschrift für angewandte Mathematik und Physik, 2008, 59 : 810 - 833