Fork–join and redundancy systems with heavy-tailed job sizes

被引:0
作者
Youri Raaijmakers
Sem Borst
Onno Boxma
机构
[1] Eindhoven University of Technology,Department of Mathematics and Computer Science
来源
Queueing Systems | 2023年 / 103卷
关键词
Parallel-server systems; Fork–join; Redundancy; Heavy-tailed distributions; Response time asymptotics; Primary 60K25; 90B22; Secondary 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the tail asymptotics of the response time distribution for the cancel-on-start (c.o.s.) and cancel-on-completion (c.o.c.) variants of redundancy-d scheduling and the fork–join model with heavy-tailed job sizes. We present bounds, which only differ in the pre-factor, for the tail probability of the response time in the case of the first-come first-served discipline. For the c.o.s. variant, we restrict ourselves to redundancy-d scheduling, which is a special case of the fork–join model. In particular, for regularly varying job sizes with tail index-ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu $$\end{document} the tail index of the response time for the c.o.s. variant of redundancy-d equals -min{dcap(ν-1),ν}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min \{d_{\mathrm {cap}}(\nu -1),\nu \}$$\end{document}, where dcap=min{d,N-k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathrm {cap}} = \min \{d,N-k\}$$\end{document}, N is the number of servers and k is the integer part of the load. This result indicates that for dcap<νν-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathrm {cap}} < \frac{\nu }{\nu -1}$$\end{document} the waiting time component is dominant, whereas for dcap>νν-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{\mathrm {cap}} > \frac{\nu }{\nu -1}$$\end{document} the job size component is dominant. Thus, having d=⌈min{νν-1,N-k}⌉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = \lceil \min \{\frac{\nu }{\nu -1},N-k\} \rceil $$\end{document} replicas is sufficient to achieve the optimal asymptotic tail behavior of the response time. For the c.o.c. variant of the fork–join (nF,nJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_{\mathrm {F}},n_{\mathrm {J}}$$\end{document}) model, the tail index of the response time, under some assumptions on the load, equals 1-ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-\nu $$\end{document} and 1-(nF+1-nJ)ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-(n_{\mathrm {F}}+1-n_{\mathrm {J}})\nu $$\end{document}, for identical and i.i.d. replicas, respectively; here, the waiting time component is always dominant.
引用
收藏
页码:131 / 159
页数:28
相关论文
共 59 条
[1]  
Asmussen S(1997)Subexponential asymptotics for stochastic processes: extremal behaviour, stationary distributions and first passage times Ann. Appl. Probab. 8 354-374
[2]  
Ayesta U(2019)On redundancy- ACM SIGMETRICS Perform. Eval. Rev. 46 24-26
[3]  
Bodas T(1989) with cancel-on-start a.k.a. join-shortest-work( Adv. Appl. Probab. 21 629-660
[4]  
Verloop IM(2015)) Queueing Syst. 81 301-340
[5]  
Baccelli F(2004)The fork-join queue and related systems with synchronization constraints: stochastic ordering and computable bounds Queueing Syst. 46 35-73
[6]  
Makowski AM(2013)Tail asymptotics for delay in a half-loaded GI/GI/2 queue with heavy-tailed job sizes Commun. ACM 56 74-80
[7]  
Shwartz A(2008)Waiting time asymptotics in the single server queue with service in random order Commun. ACM 51 107-113
[8]  
Blanchet J(2010)The tail at scale Commun. ACM 53 72-77
[9]  
Murthy KRA(1984)MapReduce: simplified data processing on large clusters SIAM J. Appl. Math. 44 1041-1053
[10]  
Boxma OJ(1998)MapReduce: a flexible data processing tool Queueing Syst. 29 55-73