Ricci curvature in the neighborhood of rank-one symmetric spaces

被引:0
作者
Erwann Delay
Marc Herzlich
机构
[1] Université de Tours,Département de Mathématiques
[2] UPRESA 6083 du CNRS,Laboratoire de Mathématiques et Physique Théorique
[3] Université Montpellier II,Département de Mathématiques
[4] UMR 5030 du CNRS,Géométrie
关键词
primary: 53C21, 58J60; secondary: 35B40, 53C35; Ricci curvature; noncompact rank 1 symmetric spaces; weighted functional spaces;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Ricci curvature of a Riemannian metric as a differential operator acting on the space of metrics close (in a weighted functional spaces topology) to the standard metric of a rank-one noncompact symmetric space. We prove that any symmetric bilinear field close enough to the standard may be realized as the Ricci curvature of a unique close metric if its decay rate at infinity (its weight) belongs to some precisely known interval. We also study what happens if the decay rate is too small or too large.
引用
收藏
页码:573 / 588
页数:15
相关论文
共 6 条
[1]  
Anderson M.(1983)The Dirichlet problem at infinity for manifolds of negative curvature J. Diff. Geom. 18 701-721
[2]  
Andersson L.(1993)Elliptic systems on manifolds with asymptotically negative curvature Indiana Univ. Math. J. 42 1359-1388
[3]  
Delay E.(1997)Analyse préciséc d'équations semi-linéaires elliptiques sur l'espace hyperbolique et application à la courbure scalaire conforme Bull. Soc. Math. Fr. 125 345-381
[4]  
Delay E.(1999)Etude locale d'opérateurs de courbure sur l'espace hyperbolique J. Math. Pures Appl. 78 389-430
[5]  
Graham C.R.(1991)Einstein metrics with prescribed conformal infinity on the ball Adv. Math. 87 186-225
[6]  
Lee J.(undefined)undefined undefined undefined undefined-undefined