Differentiable solutions of an iterative functional equation

被引:7
作者
Wang X. [1 ]
Si J. [1 ]
机构
[1] Department of Mathematics, Binzhou Normal College, Binzhou
关键词
Differentiable solution; Fixed point theorem; Iterative functional equation;
D O I
10.1007/s000100050162
中图分类号
学科分类号
摘要
Using the fixed point theorems of Schauder and Banach, in this paper we discuss the existence, uniqueness and stability of differentiable solutions of an iterative functional equation. © Birkhäuser Verlag, 2001.
引用
收藏
页码:79 / 96
页数:17
相关论文
共 50 条
[31]   Singular Solutions of the Generalized Dhombres Functional Equation [J].
Reich, L. ;
Smital, J. ;
Stefankova, M. .
RESULTS IN MATHEMATICS, 2014, 65 (1-2) :251-261
[32]   Singular Solutions of the Generalized Dhombres Functional Equation [J].
L. Reich ;
J. Smítal ;
M. Štefánková .
Results in Mathematics, 2014, 65 :251-261
[33]   Existence,uniqueness and stability of Cm solutions of iterative functional equations [J].
麦结华 ;
刘新和 .
Science China Mathematics, 2000, (09) :897-913
[34]   Existence, uniqueness and stability of Cm solutions of iterative functional equations [J].
Mai, JH ;
Liu, XH .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2000, 43 (09) :897-913
[36]   Existence, uniqueness and stability ofCm solutions of iterative functional equations [J].
Jiehua Mai ;
Xinhe Liu .
Science in China Series A: Mathematics, 2000, 43 :897-913
[37]   Solutions of Impulsive Fractional Neutral Functional Differential Equation [J].
Fang, Huiping ;
Jiang, Heping ;
Hu, Jianwei .
2018 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2018), 2018, :592-595
[38]   Global asymptotic stability of solutions of a functional integral equation [J].
Banas, Jozef ;
Dhage, Bapurao C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) :1945-1952
[39]   On existence and asymptotic behaviour of solutions of a functional integral equation [J].
Banas, Jozef ;
Cabrera, Ignacio J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (10) :2246-2254
[40]   DISCUSSION ON THE DIFFERENTIABLE SOLUTIONS OF THE ITERATED EQUATION SIGMA-IN = LAMBDA-IFI(X) = F(X) [J].
ZHANG, WI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 15 (04) :387-398