Differentiable solutions of an iterative functional equation

被引:7
作者
Wang X. [1 ]
Si J. [1 ]
机构
[1] Department of Mathematics, Binzhou Normal College, Binzhou
关键词
Differentiable solution; Fixed point theorem; Iterative functional equation;
D O I
10.1007/s000100050162
中图分类号
学科分类号
摘要
Using the fixed point theorems of Schauder and Banach, in this paper we discuss the existence, uniqueness and stability of differentiable solutions of an iterative functional equation. © Birkhäuser Verlag, 2001.
引用
收藏
页码:79 / 96
页数:17
相关论文
共 50 条
[21]   ON THE EXISTENCE OF PERIODIC SOLUTIONS OF A SECOND ORDER ITERATIVE DIFFERENTIAL EQUATION [J].
Khemis, R. ;
Bouakkaz, A. ;
Chouaf, S. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (01) :9-22
[22]   Global Solutions for Leading Coefficient Problem of a General Iterative Equation [J].
Lin Li ;
Wei Song .
Results in Mathematics, 2015, 68 :247-260
[23]   PSEUDO ALMOST PERIODIC SOLUTIONS OF AN ITERATIVE EQUATION WITH VARIABLE COEFFICIENTS [J].
Zhao, Hou Yu ;
Feckan, Michal .
MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) :515-524
[24]   Global Solutions for Leading Coefficient Problem of a General Iterative Equation [J].
Li, Lin ;
Song, Wei .
RESULTS IN MATHEMATICS, 2015, 68 (1-2) :247-260
[25]   On regular solutions of some simple iterative functional equations [J].
Brillouët-Belluot N. .
Aequationes mathematicae, 2004, 67 (1-2) :117-131
[26]   Second order iterative functional equations related to a competition equation [J].
Peter Kahlig ;
Janusz Matkowski .
Aequationes mathematicae, 2015, 89 :107-117
[27]   PERIODIC SOLUTIONS FOR A SECOND ORDER NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATION WITH ITERATIVE TERMS BY SCHAUDER'S FIXED POINT THEOREM [J].
Bouakkaz, A. ;
Ardjouni, A. ;
Djoudi, A. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2018, 87 (02) :223-235
[28]   Second order iterative functional equations related to a competition equation [J].
Kahlig, Peter ;
Matkowski, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :107-117
[29]   Analytic solutions of a functional equation for invariant curves [J].
Si, JG ;
Zhang, WN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 259 (01) :83-93
[30]   The holomorphic solutions of the generalized Dhombres functional equation [J].
Reich, L. ;
Smital, J. ;
Stefankova, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 333 (02) :880-888