Differentiable solutions of an iterative functional equation

被引:7
作者
Wang X. [1 ]
Si J. [1 ]
机构
[1] Department of Mathematics, Binzhou Normal College, Binzhou
关键词
Differentiable solution; Fixed point theorem; Iterative functional equation;
D O I
10.1007/s000100050162
中图分类号
学科分类号
摘要
Using the fixed point theorems of Schauder and Banach, in this paper we discuss the existence, uniqueness and stability of differentiable solutions of an iterative functional equation. © Birkhäuser Verlag, 2001.
引用
收藏
页码:79 / 96
页数:17
相关论文
共 15 条
[1]  
Kuczma M., Functional Equations in A Single Variable, (1968)
[2]  
Rice R.E., Schweizer B., Sklar A., When is f(f(x)) = az<sup>2</sup>+bz + c?, Amer. Math. Monthly, 87, pp. 252-263, (1980)
[3]  
Kuczma M., Choczewski B., Ger R., Iterative functional equations, Encyclopedia Math. Appl., 32, (1990)
[4]  
Mukherjea A., Ratti J.S., On a functional equation involving iterates of a bijection on the unit interval, Nonlinear Anal., 7, pp. 899-908, (1983)
[5]  
Dhombres J.G., Itéation linéaire d'order deux, Publ. Math. Debrecen, 24, pp. 277-287, (1977)
[6]  
Zhang W., Discussion on the iterated equation ∑<sub>i=1</sub><sup>n</sup>λ<sub>i</sub>f<sup>i</sup>(x) = F(x), Chinese Sci. Bull., 32, pp. 1444-1451, (1987)
[7]  
Zhang W., Discussion on the differentiable solutions of the iterated equation ∑<sub>i=1</sub><sup>n</sup>λ<sub>i</sub>f<sup>i</sup>(x) = F(x), Nonlinear Anal., 15, pp. 387-398, (1990)
[8]  
Si J., On the monotonic continuous solutions of some iterated equation, Demonstratio Math., 29, pp. 543-547, (1996)
[9]  
Si J., On analytic solutions of the equation of invariant curves, C. R. Math. Rep. Acad. Sci. Canada, 17, 1, pp. 49-52, (1995)
[10]  
Si J., C<sup>2</sup> solutions of the iterated equation ∑<sub>i=1</sub><sup>n</sup> (x) = F(x), Acta Math. Sinica, 36, 3, pp. 348-357, (1993)