Classification on irreducible Whittaker modules over quantum group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q}\left( {{\mathfrak{s}\mathfrak{l}_3},\,{\rm{\Lambda }}} \right)$$\end{document}

被引:0
作者
Limeng Xia
Xiangqian Guo
Jiao Zhang
机构
[1] Jiangsu University,Institute of Applied System Analysis
[2] Zhengzhou University,School of Mathematics and Statistics
[3] Shanghai University,Department of Mathematics
关键词
Quantum group; simple; Whittaker module; Whittaker vector; 17B37; 20G42;
D O I
10.1007/s11464-021-0932-7
中图分类号
学科分类号
摘要
We define the Whittaker modules over the simply-connected quantum group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q}\left( {{\mathfrak{s}\mathfrak{l}_3},\,{\rm{\Lambda }}} \right)$$\end{document}, where Λ is the weight lattice of Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{s}\mathfrak{l}_3}$$\end{document}. Then we completely classify all those simple ones. Explicitly, a simple Whittaker module over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q}\left( {{\mathfrak{s}\mathfrak{l}_3},\,{\rm{\Lambda }}} \right)$$\end{document} is either a highest weight module, or determined by two parameters z ∈ ℂ and γ ∈ ℂ* (up to a Hopf automorphism).
引用
收藏
页码:1089 / 1097
页数:8
相关论文
共 30 条
[1]  
Adamović D(2016)Whittaker modules for the affine Lie algebra Adv Math 289 438-479
[2]  
Lü R C(1974)On algebraically irreducible representations of the Lie algebras J Math Phys 15 350-359
[3]  
Zhao K M(2009)Whittaker modules for generalized Weyl algebras Represent Theory 13 141-164
[4]  
Arnal D(2008)Whittaker modules for Heisenberg algebras and imaginary Whittaker modules for affine Lie algebras J Algebra 320 2871-2890
[5]  
Pinzcon G(2011)Whittaker modules over generalized Virasoro algebras Comm Algebra 39 3222-3231
[6]  
Benkart G(2011)Whittaker modules over Virasoro-like algebra J Math Phys 52 093504-3272
[7]  
Ondrus M(2019)Simple Whittaker modules over free bosonic orbifold vertex operator algebras Proc Amer Math Soc 147 3259-184
[8]  
Christodoulopoulou K(1978)On Whittaker vectors and representation theory Invent Math 48 101-294
[9]  
Guo X Q(2018)On the centers of quantum groups of Sci China Math 61 287-410
[10]  
Liu X W(2019)-type J Algebra Appl 18 1950211-213