Asymptotics of the Solutions of the Random Schrödinger Equation

被引:0
作者
Guillaume Bal
Tomasz Komorowski
Lenya Ryzhik
机构
[1] Columbia University,Department of Applied Physics and Applied Mathematics
[2] UMCS,Institute of Mathematics
[3] IMPAN,Department of Mathematics
[4] Stanford University,undefined
来源
Archive for Rational Mechanics and Analysis | 2011年 / 200卷
关键词
Fractional Brownian Motion; Random Medium; Oscillatory Phase; Lebesgue Dominate Convergence Theorem; Absolute Moment;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of the Schrödinger equation with a weak time-dependent random potential. It is shown that when the two-point correlation function of the potential is rapidly decaying, then the Fourier transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat\zeta_\epsilon(t,\xi)}$$\end{document} of the appropriately scaled solution converges point-wise in ξ to a stochastic complex Gaussian limit. On the other hand, when the two-point correlation function decays slowly, we show that the limit of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat\zeta_\epsilon(t,\xi)}$$\end{document} has the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat\zeta_0(\xi){\rm exp}(iB_\kappa(t,\xi))}$$\end{document} where Bκ(t, ξ) is a fractional Brownian motion.
引用
收藏
页码:613 / 664
页数:51
相关论文
共 51 条
  • [1] Bal G.(2004)On the self-averaging of wave energy in random media SIAM Multiscale Model. Simul. 2 398-420
  • [2] Bal G.(2003)Self-averaging of the Wigner transform in random media Commun. Math. Phys. 242 81-135
  • [3] Komorowski T.(2002)Radiative transport limit for the random Schrödinger equation Nonlinearity 15 513-529
  • [4] Ryzhik L.(2002)Self-averaging in time reversal for the parabolic wave equation Stoch. Dyn. 2 507-531
  • [5] Bal G.(2005)Stability of time reversed waves in changing media Discr. Contin. Dyn. Syst. A 12 793-815
  • [6] Papanicolaou G.(2002)Super-Resolution in time-reversal acoustics J. Acoust. Soc. Am. 111 230-248
  • [7] Ryzhik L.(2008)Quantum diffusion of the random Schrödinger evolution in the scaling limit I The non-recollision diagrams. Acta Math. 200 211-277
  • [8] Bal G.(2007)Quantum diffusion of the random Schrödinger evolution in the scaling limit II The recollision diagrams. Commun. Math. Phys. 271 1-53
  • [9] Papanicolaou G.(2000)Linear Boltzmann equation as the weak coupling limit of a random Schrödinger Equation Commun. Pure Appl. Math. 53 667-735
  • [10] Ryzhik L.(2000)Fractional Brownian motions in a limit of turbulent transport Ann. Appl. Probab. 10 1100-1120