High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

被引:0
作者
M. Saba
C. Ciuti
J. Bloch
V. Thierry-Mieg
R. André
Le Si Dang
S. Kundermann
A. Mura
G. Bongiovanni
J. L. Staehli
B. Deveaud
机构
[1] Swiss Federal Institute of Technology Lausanne,Physics Department
[2] PH-Ecublens,Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia
[3] Centre National de la Recherche Scientifique,undefined
[4] Laboratoire de Spectrometrie Physique,undefined
[5] Université J. Fourier-Grenoble,undefined
[6] Università degli Studi di Cagliari,undefined
来源
Nature | 2001年 / 414卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons1. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton–polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures2,3,4,5,6,7,8,9,10,11. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.
引用
收藏
页码:731 / 735
页数:4
相关论文
共 50 条
[41]   Polariton correlation in microcavities produced by parametric scattering [J].
Langbein, W .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (11) :2260-2270
[42]   Parametric polariton scattering in single micropillar microcavities [J].
Bajoni, D. ;
Senellart, P. ;
Peter, E. ;
Smirr, J. L. ;
Sagnes, I. ;
Lemaitre, A. ;
Bloch, J. .
PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 :1143-+
[43]   Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities [J].
Ceccarelli, Samira ;
Wenus, Jakub ;
Skolnick, Maurice S. ;
Lidzey, David G. .
SUPERLATTICES AND MICROSTRUCTURES, 2007, 41 (5-6) :289-292
[44]   Parametric matter in semiconductor microcavities [J].
Ciuti, C ;
Schwendimann, P ;
Quattropani, A .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2002, 190 (02) :305-313
[45]   Microscopic calculation of polariton scattering in semiconductor microcavities [J].
Li, Guangyao ;
Parish, Meera M. ;
Levinsen, Jesper .
PHYSICAL REVIEW B, 2021, 104 (24)
[46]   Polariton gap solitary waves in semiconductor microcavities [J].
Kamchatnov, AM ;
Darmanyan, SA ;
Nevière, M .
JOURNAL OF LUMINESCENCE, 2004, 110 (04) :373-377
[47]   Room temperature polariton emission from strongly coupled organic semiconductor microcavities [J].
Lidzey, DG ;
Bradley, DDC ;
Virgili, T ;
Armitage, A ;
Skolnick, MS ;
Walker, S .
PHYSICAL REVIEW LETTERS, 1999, 82 (16) :3316-3319
[48]   Polarization instability in a polariton system in semiconductor microcavities [J].
Gavrilov, S. S. ;
Brichkin, A. S. ;
Dorodnyi, A. A. ;
Tikhodeev, S. G. ;
Gippius, N. A. ;
Kulakovskii, V. D. .
JETP LETTERS, 2010, 92 (03) :171-178
[49]   Light engineering of the polariton landscape in semiconductor microcavities [J].
Amo, A. ;
Pigeon, S. ;
Adrados, C. ;
Houdre, R. ;
Giacobino, E. ;
Ciuti, C. ;
Bramati, A. .
PHYSICAL REVIEW B, 2010, 82 (08)
[50]   Motion of Spin Polariton Bullets in Semiconductor Microcavities [J].
Adrados, C. ;
Liew, T. C. H. ;
Amo, A. ;
Martin, M. D. ;
Sanvitto, D. ;
Anton, C. ;
Giacobino, E. ;
Kavokin, A. ;
Bramati, A. ;
Vina, L. .
PHYSICAL REVIEW LETTERS, 2011, 107 (14)