High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

被引:0
作者
M. Saba
C. Ciuti
J. Bloch
V. Thierry-Mieg
R. André
Le Si Dang
S. Kundermann
A. Mura
G. Bongiovanni
J. L. Staehli
B. Deveaud
机构
[1] Swiss Federal Institute of Technology Lausanne,Physics Department
[2] PH-Ecublens,Dipartimento di Fisica and Istituto Nazionale di Fisica della Materia
[3] Centre National de la Recherche Scientifique,undefined
[4] Laboratoire de Spectrometrie Physique,undefined
[5] Université J. Fourier-Grenoble,undefined
[6] Università degli Studi di Cagliari,undefined
来源
Nature | 2001年 / 414卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons1. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton–polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures2,3,4,5,6,7,8,9,10,11. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.
引用
收藏
页码:731 / 735
页数:4
相关论文
共 50 条
[21]   Stimulated polariton-polariton scattering in semiconductor microcavities [J].
Kulakovskii, VD ;
Krizhanovskii, DN ;
Makhonin, MN ;
Demenev, AA ;
Gippius, NA ;
Tikhodeev, SG .
PHYSICS-USPEKHI, 2005, 48 (03) :312-318
[22]   Resonant polariton-polariton scattering in semiconductor microcavities [J].
Wouters, Michiel .
PHYSICAL REVIEW B, 2007, 76 (04)
[23]   Polariton-polariton collinear interaction in semiconductor microcavities [J].
Lebedev, M. V. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2013, 53 :55-58
[24]   Suppressed polariton scattering in semiconductor microcavities [J].
Baumberg, JJ ;
Armitage, A ;
Skolnick, MS ;
Roberts, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (03) :661-664
[25]   Multipartite polariton entanglement in semiconductor microcavities [J].
Liew, T. C. H. ;
Savona, V. .
PHYSICAL REVIEW A, 2011, 84 (03)
[26]   Semiconductor microcavities: towards polariton lasers [J].
Kavokin, A ;
Malpuech, G ;
Gil, B .
MRS INTERNET JOURNAL OF NITRIDE SEMICONDUCTOR RESEARCH, 2003, 8 (03)
[27]   Evidence of polariton stimulation in semiconductor microcavities [J].
Boeuf, F ;
André, R ;
Romestain, R ;
Dang, LS ;
Peronne, E ;
Lampin, JF ;
Hulin, D ;
Alexandrou, A .
PHYSICAL REVIEW B, 2000, 62 (04) :R2279-R2282
[28]   Polariton quantum boxes in semiconductor microcavities [J].
El Daïf, O ;
Baas, A ;
Guillet, T ;
Brantut, JP ;
Kaitouni, RI ;
Staehli, JL ;
Morier-Genoud, F ;
Deveaud, B .
APPLIED PHYSICS LETTERS, 2006, 88 (06)
[29]   Polariton resonant scattering in semiconductor microcavities [J].
Litinskaia, ML ;
La Rocca, GC .
PHYSICS LETTERS A, 1999, 264 (2-3) :232-241
[30]   Vectorial polariton solitons in semiconductor microcavities [J].
Zhang, W. L. ;
Yu, S. F. .
OPTICS EXPRESS, 2010, 18 (20) :21219-21224