Tame torsion, the tame inverse Galois problem, and endomorphisms

被引:0
|
作者
Matthew Bisatt
机构
[1] University of Bristol,
来源
manuscripta mathematica | 2021年 / 165卷
关键词
11G15; 11G30; 12F12;
D O I
暂无
中图分类号
学科分类号
摘要
Fix a positive integer g and rational prime p. We prove the existence of a genus g curve C/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C/\mathbb {Q}$$\end{document} such that the mod p representation of its Jacobian is tame by imposing conditions on the endomorphism ring. As an application, we consider the tame inverse Galois problem and are able to realise general symplectic groups as Galois groups of tame extensions of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}.
引用
收藏
页码:283 / 290
页数:7
相关论文
共 50 条