Tame torsion, the tame inverse Galois problem, and endomorphisms

被引:0
|
作者
Matthew Bisatt
机构
[1] University of Bristol,
来源
manuscripta mathematica | 2021年 / 165卷
关键词
11G15; 11G30; 12F12;
D O I
暂无
中图分类号
学科分类号
摘要
Fix a positive integer g and rational prime p. We prove the existence of a genus g curve C/Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C/\mathbb {Q}$$\end{document} such that the mod p representation of its Jacobian is tame by imposing conditions on the endomorphism ring. As an application, we consider the tame inverse Galois problem and are able to realise general symplectic groups as Galois groups of tame extensions of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}.
引用
收藏
页码:283 / 290
页数:7
相关论文
共 50 条
  • [1] Tame torsion, the tame inverse Galois problem, and endomorphisms
    Bisatt, Matthew
    MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 283 - 290
  • [2] Tame torsion and the tame inverse Galois problem
    Matthew Bisatt
    Tim Dokchitser
    Mathematische Annalen, 2021, 381 : 1439 - 1453
  • [3] Tame torsion and the tame inverse Galois problem
    Bisatt, Matthew
    Dokchitser, Tim
    MATHEMATISCHE ANNALEN, 2021, 381 (3-4) : 1439 - 1453
  • [4] Galois Representations and the Tame Inverse Galois Problem
    Arias-de-Reyna, Sara
    Vila, Nuria
    WIN - WOMEN IN NUMBERS: RESEARCH DIRECTIONS IN NUMBER THEORY, 2011, 60 : 277 - 288
  • [5] TAME ORDERS TAME RAMIFICATION AND GALOIS COHOMOLOGY
    SILVER, L
    ILLINOIS JOURNAL OF MATHEMATICS, 1968, 12 (01) : 7 - &
  • [6] ON GALOIS COVERINGS OF TAME ALGEBRAS
    DOWBOR, P
    SKOWRONSKI, A
    ARCHIV DER MATHEMATIK, 1985, 44 (06) : 522 - 529
  • [7] GALOIS SUBFIELDS OF TAME DIVISION ALGEBRAS
    Hanke, Timo
    Neftin, Danny
    Wadsworth, Adrian
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 211 (01) : 367 - 389
  • [8] Tame Galois module structure revisited
    Fabio Ferri
    Cornelius Greither
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 2029 - 2042
  • [9] Galois codescent for motivic tame kernels
    Assim, J.
    Movahhedi, A.
    ANNALES MATHEMATIQUES DU QUEBEC, 2025,
  • [10] Tame Galois module structure revisited
    Ferri, Fabio
    Greither, Cornelius
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (06) : 2029 - 2042