Elastic–Plastic Fracture Propagation Modeling in Rock Fracturing via Punch Through Shear Test

被引:0
作者
M. Jarrahi
G. Blöcher
C. Kluge
H. M. Holländer
机构
[1] University of Manitoba,Department of Civil Engineering
[2] Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences,undefined
来源
Rock Mechanics and Rock Engineering | 2021年 / 54卷
关键词
Crack phase-field; Punch through shear test; Fracture propagation modeling; Plastic fracturing; Shear fracture;
D O I
暂无
中图分类号
学科分类号
摘要
Fracture initiation and propagation from a wellbore within a rock formation exhibit nonlinear and inelastic behaviors. When the rock material undergoes plastic deformation prior to failure, the classical Griffith theory is no longer valid. In this study, a variational phase-field approach is applied to model the inelastic behavior of granite rock in a punch through shear test. The rock failure and the fracture initiation and propagation during the loading was simulated and compared to the corresponding experimental investigations. In this numerical approach, the total local free energy is fully coupled with solid deformation and computes the plastic strain rate. The code is scripted in Multiphysics Object Oriented Simulation Environment (MOOSE). The model is shown capable of reproducing the evidenced phenomena from Punch Through Shear (PTS) test encompassing mixed mode fracture pattern Mode I, and Mode II. The numerical results show a good agreement in the stress–displacement curve with experimental data for the critical energy release rate of Gc=600N/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{c}=600\mathrm{N}/\mathrm{m}$$\end{document}. Therefore, the granite sample’s fracture toughness for Mode II is calculated to be 4.85 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{MPa}\sqrt{\mathrm{m}}$$\end{document} at no confining pressure.
引用
收藏
页码:3135 / 3147
页数:12
相关论文
共 91 条
  • [11] Msekh MA(1961)Cleavage fracture initiation in notched impact tests of mild steel Nature 190 432-432
  • [12] Backers T(2018)Variational phase-field formulation of non-linear ductile fracture Comput Methods Appl Mech Eng 342 71-94
  • [13] Stephansson O(2015)Physics-based multiscale coupling for full core nuclear reactor simulation Ann Nuclear Energy 84 9-174
  • [14] Backers T(2012)A phase-field model for ductile to brittle failure mode transition PAMM 12 173-468
  • [15] Stephansson O(2019)Development of a phase-field method for modeling brittle and ductile fracture Comput Mater Sci 169 109089-421
  • [16] Rybacki E(2003)The effect of crack tunneling on crack growth: experiments and CTOA analyses Eng Fract Mech 70 457-10224
  • [17] Besson J(1987)Eroding interface and improved tetrahedral element algorithms for high-velocity impact computations in three dimensions Int J Impact Eng 5 411-3634
  • [18] Bouchard PO(2020)Hydraulic-mechanical properties of microfaults in granitic rock using the Punch-Through Shear test Int J Rock Mech Min Sci 134 104393-1558
  • [19] Bay F(2008)A phase-field model for fracture PAMM 8 10223-456
  • [20] Chastel Y(2010)A continuum phase-field model for fracture Eng Fract Mech 77 3625-22