Elastic–Plastic Fracture Propagation Modeling in Rock Fracturing via Punch Through Shear Test

被引:0
作者
M. Jarrahi
G. Blöcher
C. Kluge
H. M. Holländer
机构
[1] University of Manitoba,Department of Civil Engineering
[2] Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences,undefined
来源
Rock Mechanics and Rock Engineering | 2021年 / 54卷
关键词
Crack phase-field; Punch through shear test; Fracture propagation modeling; Plastic fracturing; Shear fracture;
D O I
暂无
中图分类号
学科分类号
摘要
Fracture initiation and propagation from a wellbore within a rock formation exhibit nonlinear and inelastic behaviors. When the rock material undergoes plastic deformation prior to failure, the classical Griffith theory is no longer valid. In this study, a variational phase-field approach is applied to model the inelastic behavior of granite rock in a punch through shear test. The rock failure and the fracture initiation and propagation during the loading was simulated and compared to the corresponding experimental investigations. In this numerical approach, the total local free energy is fully coupled with solid deformation and computes the plastic strain rate. The code is scripted in Multiphysics Object Oriented Simulation Environment (MOOSE). The model is shown capable of reproducing the evidenced phenomena from Punch Through Shear (PTS) test encompassing mixed mode fracture pattern Mode I, and Mode II. The numerical results show a good agreement in the stress–displacement curve with experimental data for the critical energy release rate of Gc=600N/m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{c}=600\mathrm{N}/\mathrm{m}$$\end{document}. Therefore, the granite sample’s fracture toughness for Mode II is calculated to be 4.85 MPam\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{MPa}\sqrt{\mathrm{m}}$$\end{document} at no confining pressure.
引用
收藏
页码:3135 / 3147
页数:12
相关论文
共 91 条
  • [1] Allen SM(1972)Ground state structures in ordered binary alloys with second neighbor interactions Acta Metall 20 423-433
  • [2] Cahn JW(2015)Phase-field modeling of ductile fracture Comput Mech 55 1017-1040
  • [3] Ambati M(2016)Damage and fracture algorithm using the screened Poisson equation and local remeshing Eng Fract Mech 158 116-143
  • [4] Gerasimov T(2016)Phase-field analysis of finite-strain plates and shells including element subdivision Comput Methods Appl Mech Eng 312 322-350
  • [5] De Lorenzis L(2012)ISRM suggested method for the determination of mode II fracture toughness Rock Mech Rock Eng 45 1011-1022
  • [6] Areias P(2002)Rock fracture toughness testing in Mode II—punch-through shear test Int J Rock Mech Min Sci 39 755-769
  • [7] Msekh MA(2009)Continuum models of ductile fracture: a review Int J Damage Mech 19 3-52
  • [8] Rabczuk T(2003)Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria Comput Methods Appl Mech Eng 192 3887-3908
  • [9] Areias P(2000)Numerical experiments in revisited brittle fracture J Mech Phys Solids 48 797-826
  • [10] Rabczuk T(2014)Numerical modelling of crack propagation in ductile materials combining the GTN model and X-FEM Comput Methods Appl Mech Eng 275 204-233