A grid graph Gg\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G_{\mathrm{g}}$$\end{document} is a finite vertex-induced subgraph of the two-dimensional integer grid G∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$G^\infty $$\end{document}. A rectangular grid graph R(m, n) is a grid graph with horizontal size m and vertical size n. A rectangular grid graph with a rectangular hole is a rectangular grid graph R(m, n) such that a rectangular grid subgraph R(k, l) is removed from it. The Hamiltonian path problem for general grid graphs is NP-complete. In this paper, we give necessary conditions for the existence of a Hamiltonian path between two given vertices in an odd-sized rectangular grid graph with a rectangular hole. In addition, we show that how such paths can be computed in linear time.