Relative torsion and bordism classes of positive scalar curvature metrics on manifolds with boundary

被引:0
作者
Simone Cecchini
Mehran Seyedhosseini
Vito Felice Zenobi
机构
[1] Texas A &M University,Department of Mathematics
[2] Istituto Nazionale di Alta Matematica,Sapienza Università di Roma
来源
Mathematische Zeitschrift | 2023年 / 305卷
关键词
Manifolds with boundary; Positive scalar curvature; Rho-invariants; Moduli space; 19K56; 53C27; 53C22; 58J28;
D O I
暂无
中图分类号
学科分类号
摘要
We define a relative L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-invariant for Dirac operators on odd-dimensional spin manifolds with boundary and show that they are invariants of the bordism classes of positive scalar curvature metrics which are collared near the boundary. As an application, we show that if a 4k+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4k+3$$\end{document}-dimensional spin manifold with boundary admits such a metric and if, roughly speaking, there exists a torsion element in the difference of the fundamental groups of the manifold and its boundary, then there are infinitely many bordism classes of such psc metrics on the given manifold. This result implies that the moduli-space of psc metrics on such manifolds has infinitely many path components. We also indicate how to define delocalised η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-invariants for odd-dimensional spin manifolds with boundary.
引用
收藏
相关论文
共 27 条
[1]  
Atiyah MF(1975)Spectral asymmetry and Riemannian geometry. I Math. Proc. Camb. Philos. Soc. 77 43-69
[2]  
Patodi VK(1975)Spectral asymmetry and Riemannian geometry. II Math. Proc. Camb. Philos. Soc. 78 405-432
[3]  
Singer IM(2015)The Higson–Roe exact sequence and J. Funct. Anal. 268 974-1031
[4]  
Atiyah MF(2017) eta invariants Invent. Math. 209 749-835
[5]  
Patodi VK(1995)Infinite loop spaces and positive scalar curvature Math. Ann. 302 507-517
[6]  
Singer IM(2015)The eta invariant and metrics of positive scalar curvature Q. J. Math. 66 473-506
[7]  
Benameur M-T(1985)The universal J. Differ. Geom. 21 1-34
[8]  
Roy I(2019)-invariant for manifolds with boundary Geom. Topol. 23 1549-1610
[9]  
Botvinnik B(1987)Bounds on the von Neumann dimension of Ann. Global Anal. Geom. 5 179-191
[10]  
Ebert J(1992)-cohomology and the Gauss–Bonnet theorem for open manifolds Geom. Funct. Anal. 2 421-454