Martin Boundary of Killed Random Walks on Isoradial Graphs

被引:0
|
作者
Cédric Boutillier
Kilian Raschel
机构
[1] Sorbonne Université,
[2] CNRS,undefined
[3] Laboratoire de Probabilités,undefined
[4] Statistique et Modélisation (UMR 8001),undefined
[5] Institut Universitaire de France,undefined
[6] CNRS & Institut Denis Poisson (UMR 7013),undefined
[7] Université de Tours et Université d’Orléans,undefined
来源
Potential Analysis | 2022年 / 57卷
关键词
Martin boundary; Green function; Isoradial graphs; Killed random walk; Discrete exponential function; Primary 31C35; 05C81;; Secondary 82B20; 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
We consider killed planar random walks on isoradial graphs. Contrary to the lattice case, isoradial graphs are not translation invariant, do not admit any group structure and are spatially non-homogeneous. Despite these crucial differences, we compute the asymptotics of the Martin kernel, deduce the Martin boundary and show that it is minimal. Similar results on the grid ℤd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {Z}^{d}$\end{document} are derived in a celebrated work of Ney and Spitzer.
引用
收藏
页码:201 / 226
页数:25
相关论文
共 50 条
  • [1] Martin Boundary of Killed Random Walks on Isoradial Graphs
    Boutillier, Cedric
    Raschel, Kilian
    POTENTIAL ANALYSIS, 2022, 57 (02) : 201 - 226
  • [2] t-Martin Boundary of Killed Random Walks in the Quadrant
    Lecouvey, Cedric
    Raschel, Kilian
    SEMINAIRE DE PROBABILITES XLVIII, 2016, 2168 : 305 - 323
  • [3] The Martin boundary and ratio limit theorems for killed random walks
    Doney, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1998, 58 : 761 - 768
  • [4] MARTIN BOUNDARY OF A KILLED RANDOM WALK ON A QUADRANT
    Ignatiouk-Robert, Irina
    Loree, Christophe
    ANNALS OF PROBABILITY, 2010, 38 (03): : 1106 - 1142
  • [5] Reflected random walks and unstable Martin boundary
    Ignatiouk-Robert, Irina
    Kurkova, Irina
    Raschel, Kilian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 549 - 587
  • [6] Random walks on directed lattices and Martin boundary
    de Loynes, Basile
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 87 - 90
  • [7] Remarks on random walks on graphs and the Floyd boundary
    Spanos, Panagiotis
    ARKIV FOR MATEMATIK, 2022, 60 (01): : 183 - 194
  • [8] Martin boundary theory of some quantum random walks
    Collins, B
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (03): : 367 - 384
  • [9] GREEN FUNCTIONS AND MARTIN COMPACTIFICATION FOR KILLED RANDOM WALKS RELATED TO SU(3)
    Raschel, Kilian
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 176 - 190
  • [10] Martin boundary of a killed random walk on a half-space
    Ignatiouk-Robert, Irina
    JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (01) : 35 - 68