A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations

被引:0
|
作者
G. Murali Mohan Reddy
Rajen Kumar Sinha
José Alberto Cuminato
机构
[1] University of São Paulo at São Carlos,Department of Applied Mathematics and Statistics, Institute of Mathematics and Computer Sciences
[2] Indian Institute of Technology Guwahati,Department of Mathematics
来源
Journal of Scientific Computing | 2019年 / 79卷
关键词
Parabolic integro-differential equations; Finite element method; Ritz–Volterra reconstruction; Crank–Nicolson method; error estimate;
D O I
暂无
中图分类号
学科分类号
摘要
We study a posteriori error analysis for the space-time discretizations of linear parabolic integro-differential equation in a bounded convex polygonal or polyhedral domain. The piecewise linear finite element spaces are used for the space discretization, whereas the time discretization is based on the Crank–Nicolson method. The Ritz–Volterra reconstruction operator (IMA J Numer Anal 35:341–371, 2015), a generalization of elliptic reconstruction operator (SIAM J Numer Anal 41:1585–1594, 2003), is used in a crucial way to obtain optimal rate of convergence in space. Moreover, a quadratic (in time) space-time reconstruction operator is introduced to establish second order convergence in time. The proposed method uses nested finite element spaces and the standard energy technique to obtain optimal order error estimator in the L∞(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{\infty }(L^2)$$\end{document}-norm. Numerical experiments are performed to validate the optimality of the error estimators.
引用
收藏
页码:414 / 441
页数:27
相关论文
共 50 条