Time-dependent density functional theory for quantum transport

被引:0
作者
Yanho Kwok
Yu Zhang
GuanHua Chen
机构
[1] The University of Hong Kong,Department of Chemistry
来源
Frontiers of Physics | 2014年 / 9卷
关键词
tim-dependent density functional theory (TDDFT); quantum transport; nonequilibrium Green’s function;
D O I
暂无
中图分类号
学科分类号
摘要
The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reduced-single electron density matrix based hierarchical equation of motion, which can be derived from Liouville-von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.
引用
收藏
页码:698 / 710
页数:12
相关论文
共 254 条
[1]  
Maur M A d(2008)TiberCAD: Towards multiscale simulation of optoelectronic devices Opt. Quantum Electron. 40 1077-undefined
[2]  
Povolotskyi M(1974)Molecular rectifiers Chem. Phys. Lett. 29 277-undefined
[3]  
Sacconi F(1997)Conductance of a molecular junction Science 278 252-undefined
[4]  
Pecchia A(2009)Observation of molecular orbital gating Nature 462 1039-undefined
[5]  
Romano G(2011)Single molecule electronic devices Adv. Mater. 23 1583-undefined
[6]  
Penazzi G(2006)Atomic-scale coupling of photons to single-molecule junctions Science 312 1362-undefined
[7]  
Di Carlo A(2012)Molecular optoelectronics: the interaction of molecular conduction junctions with light Phys. Chem. Chem. Phys. 14 9421-undefined
[8]  
Aviram A(2003)Electron transport in molecular wire junctions Science 300 1384-undefined
[9]  
Ratner M A(2006)Inelastic transport through molecules: Comparing first-principles calculations to experiments Nano Lett. 6 258-undefined
[10]  
Reed M A(2007)Molecular transport junctions: Vibrational effects J. Phys.: Condens. Matter 19 103201-undefined