Fields Q(i,2,p1,…,pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Q}(i, \sqrt{2},\sqrt{p_1},\ldots ,\sqrt{p_n})$$\end{document} with cyclic 2-class group

被引:0
作者
S. Essahel
A. Mouhib
机构
[1] Science and Engineering Laboratory,Sidi Mohammed Ben Abdellah University
[2] Polydisciplinary Faculty of Taza,undefined
关键词
class field; class group; multiquadratic number field; unit; fundamental system of units; Iwasawa invariant; -extension; 11R11; 11R21; 11R23; 11R29; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
Let n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} be an integer ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\geq 1$$\end{document} and p1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1$$\end{document}, . . . , pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_n$$\end{document} distinct odd prime integers. In this article, we give the list of all imaginary multiquadratic number fields Kn=Q(i,2,p1,…,pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ K_n=\mathbb{Q}(i,\sqrt 2,\sqrt{p_1},\ldots ,\sqrt{p_n})$$\end{document} that have a cyclic 2-class group.
引用
收藏
页码:499 / 509
页数:10
相关论文
empty
未找到相关数据