Differences of Idempotents In C*-Algebras and the Quantum Hall Effect

被引:0
作者
A. M. Bikchentaev
机构
[1] Kazan Federal University,
来源
Theoretical and Mathematical Physics | 2018年 / 195卷
关键词
Hilbert space; linear operator; idempotent; symmetry; projection; unitary operator; trace-class operator; *-algebra; trace; quantum Hall effect;
D O I
暂无
中图分类号
学科分类号
摘要
Let ϕ be a trace on the unital C*-algebra A and Mϕ be the ideal of the definition of the trace ϕ. We obtain a C*analogue of the quantum Hall effect: if P,Q ∈ A are idempotents and P − Q ∈ Mϕ, then ϕ((P − Q)2n+1) = ϕ(P − Q) ∈ R for all n ∈ N. Let the isometries U ∈ A and A = A*∈ A be such that I+A is invertible and U-A ∈ Mϕ with ϕ(U-A) ∈ R. Then I-A, I−U ∈ Mϕ and ϕ(I−U) ∈ R. Let n ∈ N, dimH = 2n + 1, the symmetry operators U, V ∈ B(H), and W = U − V. Then the operator W is not a symmetry, and if V = V*, then the operator W is nonunitary.
引用
收藏
页码:557 / 562
页数:5
相关论文
共 24 条
  • [1] Koliha J. J.(2003)Invertibility of the difference of idempotents Linear Multilinear Algebra 51 97-110
  • [2] Rakočević V.(2004)The difference and sum of projectors Linear Algebra Appl. 388 279-288
  • [3] Koliha J. J.(2005)Fredholm properties of the difference of orthogonal projections in a Hilbert space Integr. Equ. Oper. Theory 52 125-134
  • [4] Rakočević V.(2016)On idempotent τ -measurable operators affiliated to a von Neumann algebra Math. Notes 100 515-525
  • [5] Straškraba I.(1994)The index of a pair of projections J. Funct. Anal. 120 220-237
  • [6] Koliha J. J.(1997)A note on pairs of projections Bol. Soc. Mat. Mexicana (3) 3 309-311
  • [7] Rakočević V.(2011)Representation of tripotents and representations via tripotents Linear Algebra Appl. 435 2156-2165
  • [8] Bikchentaev A. M.(2014)Tripotents in algebras: Invertibility and hyponormality Lobachevskii J. Math. 35 281-285
  • [9] Avron J.(1994)The noncommutative geometry of the quantum Hall effect J. Math. Phys. 35 5373-5451
  • [10] Seiler R.(2016)From mathematical physics to analysis: A walk in Barry Simon’s mathematical garden. II Notices Amer. Math. Soc. 63 878-889