Existence and multiplicity of solutions for Schrödinger–Poisson equations with sign-changing potential

被引:1
作者
Yiwei Ye
Chun-Lei Tang
机构
[1] Southwest University,School of Mathematics and Statistics
[2] Chongqing Normal University,Department of Mathematics
来源
Calculus of Variations and Partial Differential Equations | 2015年 / 53卷
关键词
35J47; 35J50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence and multiplicity of solutions for the Schrödinger–Poisson equations -Δu+λV(x)u+K(x)ϕu=f(x,u)inR3,-Δϕ=K(x)u2inR3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+\lambda V(x)u+K(x)\phi u=f(x,u)\ \ \ \ \ &{} \ \text{ in }\mathbb {R}^3,\\ -\Delta \phi =K(x)u^2\ \ \ \ \ \ &{} \ \text{ in } \mathbb {R}^3, \end{array}\right. \end{aligned}$$\end{document}where λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} is a parameter, the potential V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} may change sign and f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} is either superlinear or sublinear in u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u$$\end{document} as |u|→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u|\rightarrow \infty $$\end{document}.
引用
收藏
页码:383 / 411
页数:28
相关论文
共 70 条
[1]  
Alves CO(2004)Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions Abstr. Appl. Anal. 3 251-268
[2]  
Carrião PC(2008)Multiple bound states for the Schröldinger–Poisson problem Commun. Contemp. Math. 10 391-404
[3]  
Medeiros ES(2008)On Schrödinger–Poisson systems Milan J. Math. 76 257-274
[4]  
Ambrosetti A(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[5]  
Ruiz D(2008)Ground state solutions for the nonlinear Schrödinger–Maxwell equations J. Math. Anal. Appl. 345 90-108
[6]  
Ambrosetti A(1983)Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity Nonlinear Anal. 7 981-1012
[7]  
Ambrosetti A(2001)Nonlinear Schrödinger equations with steep potential well Commun. Contemp. Math. 3 549-569
[8]  
Rabinowitz PH(1995)Existence and multiplicity results for some superlinear elliptic problems on Comm. Partial Differ. Equ. 20 1725-1741
[9]  
Azzollini A(1998)An eigenvalue problem for the Schrödinger–Maxwell equations Topol. Methods Nonlinear Anal. 11 283-293
[10]  
Pomponio A(2009)High energy solutions for the superlinear Schrödinger–Maxwell equations Nonlinear Anal. 71 4927-4934