N-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics

被引:0
|
作者
Jaime Andrade
Stefanella Boatto
Thierry Combot
Gladston Duarte
Teresinha J. Stuchi
机构
[1] Universidad del Bii o-Bii o,Departamento de Matemática, Facutad de Ciencias
[2] Universidade Federal de Rio de Janeiro,Departamento de Matemática Aplicada, Instituto de Matemática
[3] Universitat de Barcelona,Barcelona Graduate School of Mathematics & Departament de Matemàtiques i Informática
[4] Université de Bourgogne,Institut de Mathématiques de Bourgogne
[5] Universidade Federal de Rio de Janeiro,Departamento de Fiisica
来源
Regular and Chaotic Dynamics | 2020年 / 25卷
关键词
-body problem; Hodge decomposition; central forces on manifolds; topology and integrability; differential Galois theory; Poincaré sections; stability of relative equilibria; 37J30; 37J25; 53Z05; 70G60; 70H05;
D O I
暂无
中图分类号
学科分类号
摘要
The formulation of the dynamics of N-bodies on the surface of an infinite cylinder is considered. We have chosen such a surface to be able to study the impact of the surface’s topology in the particle’s dynamics. For this purpose we need to make a choice of how to generalize the notion of gravitational potential on a general manifold. Following Boatto, Dritschel and Schaefer [5], we define a gravitational potential as an attractive central force which obeys Maxwell’s like formulas.
引用
收藏
页码:78 / 110
页数:32
相关论文
共 32 条
  • [1] N-body Dynamics on an Infinite Cylinder: the Topological Signature in the Dynamics
    Andrade, Jaime
    Boatto, Stefanella
    Combot, Thierry
    Duarte, Gladston
    Stuchi, Teresinha J.
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (01) : 78 - 110
  • [2] Jacobi Dynamics And The N-Body Problem With Variable Masses
    C. M. Giordano
    A. R. Plastino
    Celestial Mechanics and Dynamical Astronomy, 1999, 75 : 165 - 183
  • [3] N-body gravitational and contact dynamics for asteroid aggregation
    Fabio Ferrari
    Alessandro Tasora
    Pierangelo Masarati
    Michèle Lavagna
    Multibody System Dynamics, 2017, 39 : 3 - 20
  • [4] Hamiltonian Dynamics of a Gyrostat in the N-Body Problem: Relative Equilibria
    J. A. Vera
    A. Vigueras
    Celestial Mechanics and Dynamical Astronomy, 2006, 94 : 289 - 315
  • [5] Unchained polygons and the N-body problem
    A. Chenciner
    J. Féjoz
    Regular and Chaotic Dynamics, 2009, 14 : 64 - 115
  • [6] Some problems on the classical n-body problem
    Alain Albouy
    Hildeberto E. Cabral
    Alan A. Santos
    Celestial Mechanics and Dynamical Astronomy, 2012, 113 : 369 - 375
  • [7] Conjugate Points in the Gravitational n-Body Problem
    Angelo B. Mingarelli
    Chiara M. F. Mingarelli
    Celestial Mechanics and Dynamical Astronomy, 2005, 91 : 391 - 401
  • [8] Central Configurations of the Curved N-Body Problem
    Florin Diacu
    Cristina Stoica
    Shuqiang Zhu
    Journal of Nonlinear Science, 2018, 28 : 1999 - 2046
  • [9] Quantum N-body problem: Matrix structures and equations
    S. L. Yakovlev
    Theoretical and Mathematical Physics, 2014, 181 : 1317 - 1338
  • [10] KAM tori for N-body problems: a brief history
    A. Celletti
    L. Chierchia
    Celestial Mechanics and Dynamical Astronomy, 2006, 95 : 117 - 139