Joint estimation for volatility and drift parameters of ergodic jump diffusion processes via contrast function

被引:0
作者
Chiara Amorino
Arnaud Gloter
机构
[1] Université Paris-Saclay,Laboratoire de Mathématiques et Modélisation d’Evry, CNRS, Univ Evry
来源
Statistical Inference for Stochastic Processes | 2021年 / 24卷
关键词
Drift estimation; Volatility estimation; Ergodic properties; High frequency data; Lévy-driven SDE; Thresholding methods;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider an ergodic diffusion process with jumps whose drift coefficient depends on μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} and volatility coefficient depends on σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, two unknown parameters. We suppose that the process is discretely observed at the instants (tin)i=0,…,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(t^n_i)_{i=0,\ldots ,n}$$\end{document} with Δn=supi=0,…,n-1(ti+1n-tin)→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n=\sup _{i=0,\ldots ,n-1} (t^n_{i+1}-t^n_i) \rightarrow 0$$\end{document}. We introduce an estimator of θ:=(μ,σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta :=(\mu , \sigma )$$\end{document}, based on a contrast function, which is asymptotically gaussian without requiring any conditions on the rate at which Δn→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n \rightarrow 0$$\end{document}, assuming a finite jump activity. This extends earlier results where a condition on the step discretization was needed (see Gloter et al. in Ann Stat 46(4):1445–1480, 2018; Shimizu and Yoshida in Stat Inference Stoch Process 9(3):227–277, 2006) or where only the estimation of the drift parameter was considered (see Amorino and Gloter in Scand J Stat 47:279–346, 2019. https://doi.org/10.1111/sjos.12406). In general situations, our contrast function is not explicit and in practise one has to resort to some approximation. We propose explicit approximations of the contrast function, such that the estimation of θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is feasible under the condition that nΔnk→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\Delta _n^k \rightarrow 0$$\end{document} where k>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>0$$\end{document} can be arbitrarily large. This extends the results obtained by Kessler (Scand J Stat 24(2):211–229, 1997) in the case of continuous processes.
引用
收藏
页码:61 / 148
页数:87
相关论文
共 40 条
[1]  
Aït-Sahalia Y(2006)Saddlepoint approximations for continuous-time Markov processes J Econom 134 507-551
[2]  
Yu J(2019)Contrast function estimation for the drift parameter of ergodic jump diffusion process Scand J Stat 47 279-346
[3]  
Amorino C(2020)Unbiased truncated quadratic variation for volatility estimation in jump diffusion processes Stoch Process Appl 130 5888-5939
[4]  
Gloter A(2001)Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics J R Stat Soc Ser B Stat Methodol 63 167-241
[5]  
Amorino C(1996)Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark Rev Financ Stud 9 69-107
[6]  
Gloter A(2009)Nonparametric estimation for pure jump Lévy processes based on high frequency data Stochastic Processes and their Applications. 119 4088-123
[7]  
Barndorff-Nielsen OE(2013)The Morris–Lecar neuron model embeds a leaky integrate-and-fire model J Math Biol 67 239-259
[8]  
Shephard N(2003)The impact of jumps in volatility and returns J Finance 58 1269-1300
[9]  
Bates DS(2011)Sieve-based confidence intervals and bands for Lévy densities Bernoulli 17 643-670
[10]  
Comte F(1989)Approximate discrete-time schemes for statistics of diffusion processes Stat J Theor Appl Stat 20 547-557