Equiconvergence of expansions in eigenfunctions of Sturm-Liouville operators with distributional potentials in Hölder spaces

被引:0
作者
I. V. Sadovnichaya
机构
[1] Moscow State University,
来源
Differential Equations | 2012年 / 48卷
关键词
Fourier Series; Liouville Operator; Singular Potential; Biorthogonal System; Biorthogonal Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the equiconvergence of expansions of an arbitrary function in the class L2(0, π) in the Fourier series in sines and in the Fourier series in the eigenfunctions of the first boundary value problem for the one-dimensional Schrödinger operator with a nonclassical potential. The equiconvergence is studied in the norm of the Hölder space. The potential is the derivative of a function that belongs to a fractional-order Sobolev space.
引用
收藏
页码:681 / 692
页数:11
相关论文
共 20 条
  • [1] Savchuk A.M.(2003)Sturm-Liouville Operators with Distribution Potentials Tr. Mosk. Mat. Obs. 64 159-219
  • [2] Shkalikov A.A.(1999)Sturm-Liouville Operators with Singular Potentials Mat. Zametki 66 897-912
  • [3] Savchuk A.M.(2006)On the Eigenvalues of the Sturm-Liouville Operator with Potentials in Sobolev Spaces Mat. Zametki 80 864-884
  • [4] Shkalikov A.A.(1991)Equiconvergence, with the Trigonometric Series, of Expansions in Root Functions of the One-Dimensional Schrödinger Operator with Complex Potential in the Class Differ. Uravn. 27 577-597
  • [5] Savchuk A.M.(2001)Uniform Equiconvergence of a Fourier Series in Eigenfunctions of the First Boundary Value Problem and of a Trigonometric Fourier Series Dokl. Akad. Nauk 380 731-735
  • [6] Shkalikov A.A.(2010)Equiconvergence of Expansions in Series in Eigenfunctions of Sturm-Liouville Operators with Distribution Potentials Mat. Sb. 201 61-76
  • [7] Il’in V.A.(1979)Estimation of the Difference of Partial Sums of Expansions Corresponding to Two Arbitrary Nonnegative Self-Adjoint Extensions of Two Sturm-Liouville Operators Differ. Uravn. 15 1175-1193
  • [8] Vinokurov V.A.(1984)The Rate of Equiconvergence for Differential Operators with Nonzero Coefficient Multiplying the ( Dokl. Akad. Nauk SSSR 279 1053-1056
  • [9] Sadovnichii V.A.(1991) − 1)st Derivative Dokl. Akad. Nauk SSSR 316 265-269
  • [10] Sadovnichaya I.V.(1999)Equiconvergence of Series in Eigenfunctions of Ordinary Functional-Differential Operators Differ. Uravn. 35 1597-1609