Many solutions for elliptic equations with critical exponents

被引:0
作者
Pigong Han
机构
[1] Academy of Mathematics and Systems Science,Institute of Applied Mathematics
[2] Chinese Academy of Sciences,undefined
来源
Israel Journal of Mathematics | 2008年 / 164卷
关键词
Weak Solution; Elliptic Equation; Critical Exponent; Dominate Convergence Theorem; Radial Solution;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω be an open bounded domain in ℝN(N ≥ 3) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$2^* = \frac{{2N}}{{N - 2}}$$ \end{document}. We are concerned with two kinds of critical elliptic problems. The first one is *\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \Delta u - \mu \frac{u}{{\left| x \right|^2 }} = \lambda u + \left| u \right|^{m - 2} u + \theta \left| u \right|^{2^* - 2} u u \in H_0^1 (\Omega ),$$ \end{document} where 0 ∈ Ω, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$0 < \mu < (\frac{{N - 2}}{2})^2 $$ \end{document}, 2 < m < 2* and λ > 0. By using the fountain theorem and concentration estimates, if N ≥ 7 and θ > 0, we establish the existence of infinitely many solutions for the following regularization of (*) with small number ϵ > 0 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ - \Delta u - \mu \frac{u}{{\left| x \right|^2 + \varepsilon }} = \lambda u + \left| u \right|^{m - 2} u + \theta \left| u \right|^{2^* - 2} u u \in H_0^1 (\Omega ).$$ \end{document} Then if θ > 0 is suitably small, we obtain many solutions for problem (*) by taking the process of approximation.
引用
收藏
页码:125 / 152
页数:27
相关论文
共 39 条
[1]  
Ambrosetti A.(1994)Combined effects of concave and convex nonlinearities in some elliptic problems Journal of Functional Analysis 122 519-543
[2]  
Brezis H.(1990)Nodal solutions of elliptic equations with critical Sobolev exponents Journal of Differential Equations 85 151-170
[3]  
Cerami G.(1988)Morse index of some min-max critical points. I. Application to multiplicity results Communications on Pure and Applied Mathematics 41 1027-1037
[4]  
Atkinson F. V.(1995)On an elliptic equation with concave and convex nonlinearities Proceedings of the American Mathematical Society 123 3555-3561
[5]  
Brezis H.(1979)Remarks on the Schrödinger operator with singular complex potentials Journal de Mathématiques Pures et Appliquées 58 137-151
[6]  
Peletier L. A.(1983)Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent Communications on Pure and Applied Mathematics 36 437-478
[7]  
Bahri A.(1984)First order interpolation inequalities with weights Compositio Mathematica 53 259-275
[8]  
Lions P. L.(2004)Solutions for semilinear elliptic equations with critical exponents and Hardy potential Journal of Differential Equations 205 521-537
[9]  
Bartsch T.(2003)A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms Journal of Differential Equations 193 424-434
[10]  
Willem M.(2001)On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extermal functions Communications on Pure and Applied Mathematics 54 229-258