Linear maps preserving pairs of hermitian matrices on which the rank is additive and applications

被引:1
作者
Tang X.-M. [1 ]
Cao C.-G. [1 ]
机构
[1] Department of Mathematics, Heilingjiang Univ., Harbin
关键词
Adjoint matrix; Hermitian matrix; Jordan homomorphism; Linear preserver; Rank-additive; Skew Hermitian matrix;
D O I
10.1007/BF02935803
中图分类号
学科分类号
摘要
Denote the set of n × n complex Hermitian matrices by Hn. A pair of n × n Hermitian matrices (A, B) is said to be rank-additive if rank (A + B) = rank A+rank B. We characterize the linear maps from Hn into itself that preserve the set of rank-additive pairs. As applications, the linear preservers of adjoint matrix on Hn and the Jordan homomorphisms of Hn are also given. The analogous problems on the skew Hermitian matrix space are considered. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:253 / 260
页数:7
相关论文
共 24 条
  • [1] Baruch E. M.(1993)Linear preservers on spaces of hermitian or real symmetric matrices Linear Algebra Appl. 183 89-102
  • [2] Loewy R.(1998)Linear operators which preserve pairs on which the rank is additive J. Korean Soc. Ind. Appl. Math. 2 27-36
  • [3] Beasley L. B.(2002)Linear operators that preserve pairs of matrices which satisfy extreme rank properties Linear Algebra Appl. 350 263-272
  • [4] Beasley L. B.(1987)Linear preservers on matrices Linear Algebra Appl. 93 67-80
  • [5] Lee S. G.(2001)Linear preservers for matrix inequalities and partial orderings Linear Algebra Appl. 331 75-87
  • [6] Song S. Z.(2004)A class of binary matrices preserving rank under matrix addition and its application J. Appl. Math. and Computing 16 105-114
  • [7] Chan G. H.(1998)Characterization of Jordan homomorphisms on M Linear Algebra Appl 269 33-46
  • [8] Lim M. H.(2003) using preserving properties Linear Algebra. Appl. 361 161-179
  • [9] Tan K. K.(2001)Hua's fundamental theorems of the geometry of matrices and related rusults Linear Algebra Appl. 338 145-152
  • [10] Guterman A.(2003)Modular automorphisms preserving idempotence and Jordan isomorphisms of triangular matrices over commutative rings Linear Algebra Appl. 372 287-293